📄 argred.s
字号:
#ifndef lint#static char *sccsid = "@(#)argred.s 4.1 (ULTRIX) 7/17/90";#endif lint/************************************************************************ * * * Copyright (c) 1986 by * * Digital Equipment Corporation, Maynard, MA * * All rights reserved. * * * * This software is furnished under a license and may be used and * * copied only in accordance with the terms of such license and * * with the inclusion of the above copyright notice. This * * software or any other copies thereof may not be provided or * * otherwise made available to any other person. No title to and * * ownership of the software is hereby transferred. * * * * This software is derived from software received from the * * University of California, Berkeley, and from Bell * * Laboratories. Use, duplication, or disclosure is subject to * * restrictions under license agreements with University of * * California and with AT&T. * * * * The information in this software is subject to change without * * notice and should not be construed as a commitment by Digital * * Equipment Corporation. * * * * Digital assumes no responsibility for the use or reliability * * of its software on equipment which is not supplied by Digital. * * * ************************************************************************//************************************************************************** Modification History** David Metsky, 12/16/86* 001 Adapted from argred.s 1.1 (Berkeley) **************************************************************************/# @(#)argred.s 1.1 (Berkeley) 8/21/85# libm$argred implements Bob Corbett's argument reduction and# libm$sincos implements Peter Tang's double precision sin/cos.# # Note: The two entry points libm$argred and libm$sincos are meant# to be used only by _sin, _cos and _tan.## method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett# S. McDonald, April 4, 1985# .globl libm$argred .globl libm$sincos .text .align 1libm$argred:## Compare the argument with the largest possible that can# be reduced by table lookup. r3 := |x| will be used in table_lookup .# movd r0,r3 bgeq abs1 mnegd r3,r3abs1: cmpd r3,$0d+4.55530934770520019583e+01 blss small_arg jsb trigred rsbsmall_arg: jsb table_lookup rsb## At this point,# r0 contains the quadrant number, 0, 1, 2, or 3;# r2/r1 contains the reduced argument as a D-format number;# r3 contains a F-format extension to the reduced argument;# r4 contains a 0 or 1 corresponding to a sin or cos entry.#libm$sincos:## Compensate for a cosine entry by adding one to the quadrant number.# addl2 r4,r0## Polyd clobbers r5-r0 ; save X in r7/r6 .# This can be avoided by rewriting trigred .# movd r1,r6## Likewise, save alpha in r8 .# This can be avoided by rewriting trigred .# movf r3,r8## Odd or even quadrant? cosine if odd, sine otherwise.# Save floor(quadrant/2) in r9 ; it determines the final sign.# rotl $-1,r0,r9 blss cosinesine: muld2 r1,r1 # Xsq = X * X polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7 mulf3 $0f3.0,r8,r4 # beta = 3 * alpha mulf2 r0,r4 # beta = Q * beta addf2 r8,r4 # beta = alpha + beta muld2 r6,r0 # S(X) = X * Q# cvtfd r4,r4 ... r5 = 0 after a polyd. addd2 r4,r0 # S(X) = beta + S(X) addd2 r6,r0 # S(X) = X + S(X) brb donecosine: muld2 r6,r6 # Xsq = X * X beql zero_arg mulf2 r1,r8 # beta = X * alpha polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7 subd3 r0,r8,r0 # beta = beta - Q subw2 $0x80,r6 # Xsq = Xsq / 2 addd2 r0,r6 # Xsq = Xsq + betazero_arg: subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsqdone: blbc r9,even mnegd r0,r0even: rsb.data.align 2sin_coef: .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8.. .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8.. .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382.. .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278.. .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d.. .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50 .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554 .double 0d+0.00000000000000000000e+00 # s0 = 0cos_coef: .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE.. .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA.. .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E.. .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8.. .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE.. .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E .double 0d+0.00000000000000000000e+00 # s1 = 0 .double 0d+0.00000000000000000000e+00 # s0 = 0## Multiples of pi/2 expressed as the sum of three doubles,## trailing: n * pi/2 , n = 0, 1, 2, ..., 29# trailing[n] ,## middle: n * pi/2 , n = 0, 1, 2, ..., 29# middle[n] ,## leading: n * pi/2 , n = 0, 1, 2, ..., 29# leading[n] ,## where# leading[n] := (n * pi/2) rounded,# middle[n] := (n * pi/2 - leading[n]) rounded,# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .trailing: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailingmiddle: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middleleading: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leadingtwoOverPi: .double 0d+6.36619772367581343076e-01 .text .align 1table_lookup: muld3 r3,twoOverPi,r0 cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded mull3 $8,r0,r5 subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded subd2 r1,r3 # r = (p - q) subd2 middle(r5),r3 # r = r - middle n*pi/2 subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded## If the original argument was negative,# negate the reduce argument and# adjust the octant/quadrant number.# tstw 4(ap) bgeq abs2 mnegf r1,r1 mnegf r3,r3# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD subb3 r0,$4,r0abs2:## Clear all unneeded octant/quadrant bits.## bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD bicb2 $0xfc,r0 rsb## p.0 .text .align 2## Only 256 (actually 225) bits of 2/pi are needed for VAX double# precision; this was determined by enumerating all the nearest# machine integer multiples of pi/2 using continued fractions.# (8a8d3673775b7ff7 required the most bits.) -S.McD# .long 0 .long 0 .long 0xaef1586d .long 0x9458eaf7 .long 0x10e4107f .long 0xd8a5664f .long 0x4d377036 .long 0x09d5f47d .long 0x91054a7f .long 0xbe60db93bits2opi: .long 0x00000028 .long 0## Note: wherever you see the word `octant', read `quadrant'.# Currently this code is set up for pi/2 argument reduction.# By uncommenting/commenting the appropriate lines, it will# also serve as a pi/4 argument reduction code.# # p.1# Trigred preforms argument reduction# for the trigonometric functions. It# takes one input argument, a D-format# number in r1/r0 . The magnitude of# the input argument must be greater# than or equal to 1/2 . Trigred produces# three results: the number of the octant# occupied by the argument, the reduced # argument, and an extension of the# reduced argument. The octant number is # returned in r0 . The reduced argument # is returned as a D-format number in # r2/r1 . An 8 bit extension of the # reduced argument is returned as an # F-format number in r3.# p.2trigred:## Save the sign of the input argument.# movw r0,-(sp)## Extract the exponent field.# extzv $7,$7,r0,r2## Convert the fraction part of the input# argument into a quadword integer.# bicw2 $0xff80,r0 bisb2 $0x80,r0 # -S.McD rotl $16,r0,r0 rotl $16,r1,r1## If r1 is negative, add 1 to r0 . This# adjustment is made so that the two's# complement multiplications done later# will produce unsigned results.# bgeq posmid incl r0posmid:# p.3## Set r3 to the address of the first quadword# used to obtain the needed portion of 2/pi .# The address is longword aligned to ensure# efficient access.# ashl $-3,r2,r3 bicb2 $3,r3 subl3 r3,$bits2opi,r3## Set r2 to the size of the shift needed to # obtain the correct portion of 2/pi .# bicb2 $0xe0,r2# p.4## Move the needed 128 bits of 2/pi into# r11 - r8 . Adjust the numbers to allow# for unsigned multiplication.# ashq r2,(r3),r10 subl2 $4,r3 ashq r2,(r3),r9 bgeq signoff1 incl r11
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -