📄 log.c
字号:
#ifndef lintstatic char *sccsid ="@(#)log.c 4.1 ULTRIX 7/17/90";#endif lint/************************************************************************ * * * Copyright (c) 1986 by * * Digital Equipment Corporation, Maynard, MA * * All rights reserved. * * * * This software is furnished under a license and may be used and * * copied only in accordance with the terms of such license and * * with the inclusion of the above copyright notice. This * * software or any other copies thereof may not be provided or * * otherwise made available to any other person. No title to and * * ownership of the software is hereby transferred. * * * * This software is derived from software received from the * * University of California, Berkeley, and from Bell * * Laboratories. Use, duplication, or disclosure is subject to * * restrictions under license agreements with University of * * California and with AT&T. * * * * The information in this software is subject to change without * * notice and should not be construed as a commitment by Digital * * Equipment Corporation. * * * * Digital assumes no responsibility for the use or reliability * * of its software on equipment which is not supplied by Digital. * * * ************************************************************************//************************************************************************** Modification History** David Metsky 14-Jan-86** 001 Replaced old version with BSD 4.3 version as part of upgrade** Based on: log.c 4.5 8/21/85**************************************************************************//* LOG(X) * RETURN THE LOGARITHM OF x * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. NG on 2/7/85, 3/7/85, 3/24/85, 4/16/85. * * Required system supported functions: * scalb(x,n) * copysign(x,y) * logb(x) * finite(x) * * Required kernel function: * log__L(z) * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * log(1+f) is computed by * * log(1+f) = 2s + s*log__L(s*s) * where * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) * * See log__L() for the values of the coefficients. * * 3. Finally, log(x) = k*ln2 + log(1+f). (Here n*ln2 will be stored * in two floating point number: n*ln2hi + n*ln2lo, n*ln2hi is exact * since the last 20 bits of ln2hi is 0.) * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * log(x) returns the exact log(x) nearly rounded. In a test run with * 1,536,000 random arguments on a VAX, the maximum observed error was * .826 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#include <math.h>#include <errno.h>#ifdef VAX /* VAX D format *//* double static *//* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 *//* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC *//* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */static long ln2hix[] = { 0x72174031, 0x0000f7d0};static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};static long sqrt2x[] = { 0x04f340b5, 0xde6533f9};#define ln2hi (*(double*)ln2hix)#define ln2lo (*(double*)ln2lox)#define sqrt2 (*(double*)sqrt2x)#else /* IEEE double */double staticln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */#endifdouble log(x)double x;{ static double zero=0.0, negone= -1.0, half=1.0/2.0; double logb(),scalb(),copysign(),log__L(),s,z,t; int k,n,finite();#ifndef vax if(x!=x) return(x); /* x is NaN */#endif if(finite(x)) { if( x > zero ) { /* argument reduction */ k=logb(x); x=scalb(x,-k); if(k == -1022) /* subnormal no. */ {n=logb(x); x=scalb(x,-n); k+=n;} if(x >= sqrt2 ) {k += 1; x *= half;} x += negone ; /* compute log(1+x) */ s=x/(2+x); t=x*x*half; z=k*ln2lo+s*(t+log__L(s*s)); x += (z - t) ; return(k*ln2hi+x); } /* end of if (x > zero) */ else {errno = EDOM; return (-HUGE_VAL);} } /* end of if (finite(x)) */ /* NOT REACHED ifdef VAX */ /* log(-INF) is NaN with signal */ else if (x<0) return(-HUGE_VAL); /* log(+INF) is +INF */ else return(x); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -