⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 log1p.c

📁 <B>Digital的Unix操作系统VAX 4.2源码</B>
💻 C
字号:
#ifndef lintstatic char	*sccsid ="@(#)log1p.c	4.1	ULTRIX	7/17/90";#endif lint/************************************************************************ *									* *			Copyright (c) 1986 by				* *		Digital Equipment Corporation, Maynard, MA		* *			All rights reserved.				* *									* *   This software is furnished under a license and may be used and	* *   copied  only  in accordance with the terms of such license and	* *   with the  inclusion  of  the  above  copyright  notice.   This	* *   software  or  any  other copies thereof may not be provided or	* *   otherwise made available to any other person.  No title to and	* *   ownership of the software is hereby transferred.			* *									* *   This software is  derived  from  software  received  from  the	* *   University    of   California,   Berkeley,   and   from   Bell	* *   Laboratories.  Use, duplication, or disclosure is  subject  to	* *   restrictions  under  license  agreements  with  University  of	* *   California and with AT&T.						* *									* *   The information in this software is subject to change  without	* *   notice  and should not be construed as a commitment by Digital	* *   Equipment Corporation.						* *									* *   Digital assumes no responsibility for the use  or  reliability	* *   of its software on equipment which is not supplied by Digital.	* *									* ************************************************************************//**************************************************************************			Modification History**		David Metsky		14-Jan-86** 001	Added from BSD 4.3 version as part of upgrade**	Based on:	log1p.c		1.3		8/21/85**************************************************************************//* LOG1P(x)  * RETURN THE LOGARITHM OF 1+x * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/19/85;  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. *  * Required system supported functions: *	scalb(x,n)  *	copysign(x,y) *	logb(x)	 *	finite(x) * * Required kernel function: *	log__L(z) * * Method : *	1. Argument Reduction: find k and f such that  *			1+x  = 2^k * (1+f),  *	   where  sqrt(2)/2 < 1+f < sqrt(2) . * *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., *	   log(1+f) is computed by * *	     		log(1+f) = 2s + s*log__L(s*s) *	   where *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) * *	   See log__L() for the values of the coefficients. * *	3. Finally,  log(1+x) = k*ln2 + log(1+f).   * *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE  *		   double) is 0. This ensures n*ln2hi is exactly representable. *		2. In step 1, f may not be representable. A correction term c *	 	   for f is computed. It follows that the correction term for *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We *		   add this correction term to n*ln2lo to attenuate the error. * * * Special cases: *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; *	log1p(INF) is +INF; log1p(-1) is -INF with signal; *	only log1p(0)=0 is exact for finite argument. * * Accuracy: *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run  *	with 1,536,000 random arguments on a VAX, the maximum observed *	error was .846 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#include <math.h>#include <errno.h>#ifdef VAX	/* VAX D format *//* double static *//* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 *//* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC *//* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */static long     ln2hix[] = { 0x72174031, 0x0000f7d0};static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};static long     sqrt2x[] = { 0x04f340b5, 0xde6533f9};#define    ln2hi    (*(double*)ln2hix)#define    ln2lo    (*(double*)ln2lox)#define    sqrt2    (*(double*)sqrt2x)#else	/* IEEE double */double staticln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */#endifdouble log1p(x)double x;{	static double zero=0.0, negone= -1.0, one=1.0, 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */	double logb(),copysign(),scalb(),log__L(),z,s,t,c;	int k,finite();#ifndef vax	if(x!=x) return(x);	/* x is NaN */#endif	if(finite(x)) {	   if( x > negone ) {	   /* argument reduction */	      if(copysign(x,one)<small) return(x);	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);	      if(z+t >= sqrt2 ) 		  { k += 1 ; z *= half; t *= half; }	      t += negone; x = z + t;	      c = (t-x)+z ;		/* correction term for x */ 	   /* compute log(1+x)  */              s = x/(2+x); t = x*x*half;	      c += (k*ln2lo-c*x);	      z = c+s*(t+log__L(s*s));	      x += (z - t) ;	      return(k*ln2hi+x);	   }	/* end of if (x > negone) */	    else {errno = EDOM; return(-HUGE_VAL); }	}    /* end of if (finite(x)) */    /* log(-INF) is NaN */	else if(x<0) 	     {errno = EDOM; return(-HUGE_VAL);}    /* log(+INF) is INF */	else return(x);      }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -