📄 第九章 查找.txt
字号:
if(p->rtag) p=p->rtag;
else
{
p=p->rchild;
while(!p->ltag) p=p->lchild;
} //转到中序后继
last=p;
}//while //借助中序遍历找到元素x及其前驱和后继结点
if(!ptr) return ERROR; //未找到待删结点
Delete_BSTree(ptr); //删除x结点
if(pre&&pre->rtag)
pre->rchild=suc; //修改线索
return OK;
}//BSTree_Delete_key
void Delete_BSTree(BiThrTree &T)//课本上给出的删除二叉排序树的子树T的算法,按照线索二叉树的结构作了一些改动
{
q=T;
if(!T->ltag&&T->rtag) //结点无右子树,此时只需重接其左子树
T=T->lchild;
else if(T->ltag&&!T->rtag) //结点无左子树,此时只需重接其右子树
T=T->rchild;
else if(!T->ltag&&!T->rtag) //结点既有左子树又有右子树
{
p=T;r=T->lchild;
while(!r->rtag)
{
s=r;
r=r->rchild; //找到结点的前驱r和r的双亲s
}
T->data=r->data; //用r代替T结点
if(s!=T)
s->rchild=r->lchild;
else s->lchild=r->lchild; //重接r的左子树到其双亲结点上
q=r;
}//else
free(q); //删除结点
}//Delete_BSTree
分析:本算法采用了先求出x结点的前驱和后继,再删除x结点的办法,这样修改线索时会比较简单,直接让前驱的线索指向后继就行了.如果试图在删除x结点的同时修改线索,则问题反而复杂化了.
9.38
void BSTree_Merge(BiTree &T,BiTree &S)//把二叉排序树S合并到T中
{
if(S->lchild) BSTree_Merge(T,S->lchild);
if(S->rchild) BSTree_Merge(T,S->rchild); //合并子树
Insert_Key(T,S); //插入元素
}//BSTree_Merge
void Insert_Node(Bitree &T,BTNode *S)//把树结点S插入到T的合适位置上
{
if(S->data>T->data)
{
if(!T->rchild) T->rchild=S;
else Insert_Node(T->rchild,S);
}
else if(S->data<T->data)
{
if(!T->lchild) T->lchild=S;
else Insert_Node(T->lchild,S);
}
S->lchild=NULL; //插入的新结点必须和原来的左右子树断绝关系
S->rchild=NULL; //否则会导致树结构的混乱
}//Insert_Node
分析:这是一个与课本上不同的插入算法.在合并过程中,并不释放或新建任何结点,而是采取修改指针的方式来完成合并.这样,就必须按照后序序列把一棵树中的元素逐个连接到另一棵树上,否则将会导致树的结构的混乱.
9.39
void BSTree_Split(BiTree &T,BiTree &A,BiTree &B,int x)//把二叉排序树T分裂为两棵二叉排序树A和B,其中A的元素全部小于等于x,B的元素全部大于x
{
if(T->lchild) BSTree_Split(T->lchild,A,B,x);
if(T->rchild) BSTree_Split(T->rchild,A,B,x); //分裂左右子树
if(T->data<=x) Insert_Node(A,T);
else Insert_Node(B,T); //将元素结点插入合适的树中
}//BSTree_Split
void Insert_Node(Bitree &T,BTNode *S)//把树结点S插入到T的合适位置上
{
if(!T) T=S; //考虑到刚开始分裂时树A和树B为空的情况
else if(S->data>T->data) //其余部分与上一题同
{
if(!T->rchild) T->rchild=S;
else Insert_Node(T->rchild,S);
}
else if(S->data<T->data)
{
if(!T->lchild) T->lchild=S;
else Insert_Node(T->lchild,S);
}
S->lchild=NULL;
S->rchild=NULL;
}//Insert_Key
9.40
typedef struct {
int data;
int bf;
int lsize; //lsize域表示该结点的左子树的结点总数加1
BlcNode *lchild,*rchild;
} BlcNode,*BlcTree; //含lsize域的平衡二叉排序树类型
BTNode *Locate_BlcTree(BlcTree T,int k)//在含lsize域的平衡二叉排序树T中确定第k小的结点指针
{
if(!T) return NULL; //k小于1或大于树结点总数
if(T->lsize==k) return T; //就是这个结点
else if(T->lsize>k)
return Locate_BlcTree(T->lchild,k); //在左子树中寻找
else return Locate_BlcTree(T->rchild,k-T->lsize); //在右子树中寻找,注意要修改k的值
}//Locate_BlcTree
9.41
typedef struct {
enum {LEAF,BRANCH} tag; //结点类型标识
int keynum;
BPLink parent; //双亲指针
int key[MAXCHILD]; //关键字
union {
BPLink child[MAXCHILD];//非叶结点的孩子指针
struct {
rectype *info[MAXCHILD];//叶子结点的信息指针
BPNode *next; //指向下一个叶子结点的链接
} leaf;
}
} BPNode,*BPLink,*BPTree;//B+树及其结点类型
Status BPTree_Search(BPTree T,int key,BPNode *ptr,int pos)//B+树中按关键字随机查找的算法,返回包含关键字的叶子结点的指针ptr以及关键字在叶子结点中的位置pos
{
p=T;
while(p.tag==BRANCH) //沿分支向下查找
{
for(i=0;i<p->keynum&&key>p->key[i];i++); //确定关键字所在子树
if(i==p->keynum) return ERROR; //关键字太大
p=p->child[i];
}
for(i=0;i<p->keynum&&key!=p->key[i];i++); //在叶子结点中查找
if(i==p->keynum) return ERROR; //找不到关键字
ptr=p;pos=i;
return OK;
}//BPTree_Search
9.42
void TrieTree_Insert_Key(TrieTree &T,StringType key)//在Trie树T中插入字符串key,StringType的结构见第四章
{
q=(TrieNode*)malloc(sizeof(TrieNode));
q->kind=LEAF;
q->lf.k=key; //建叶子结点
klen=key[0];
p=T;i=1;
while(p&&i<=klen&&p->bh.ptr[ord(key[i])])
{
last=p;
p=p->bh.ptr[ord(key[i])];
i++;
} //自上而下查找
if(p->kind==BRANCH) //如果最后落到分支结点(无同义词):
{
p->bh.ptr[ord(key[i])]=q; //直接连上叶子
p->bh.num++;
}
else //如果最后落到叶子结点(有同义词):
{
r=(TrieNode*)malloc(sizeof(TrieNode)); //建立新的分支结点
last->bh.ptr[ord(key[i-1])]=r; //用新分支结点取代老叶子结点和上一层的联系
r->kind=BRANCH;r->bh.num=2;
r->bh.ptr[ord(key[i])]=q;
r->bh.ptr[ord(p->lf.k[i])]=p; //新分支结点与新老两个叶子结点相连
}
}//TrieTree_Insert_Key
分析:当自上而下的查找结束时,存在两种情况.一种情况,树中没有待插入关键字的同义词,此时只要新建一个叶子结点并连到分支结点上即可.另一种情况,有同义词,此时要把同义词的叶子结点与树断开,在断开的部位新建一个下一层的分支结点,再把同义词和新关键字的叶子结点连到新分支结点的下一层.
9.43
Status TrieTree_Delete_Key(TrieTree &T,StringType key)//在Trie树T中删除字符串key
{
p=T;i=1;
while(p&&p->kind==BRANCH&&i<=key[0]) //查找待删除元素
{
last=p;
p=p->bh.ptr[ord(key[i])];
i++;
}
if(p&&p->kind==LEAF&&p->lf.k=key) //找到了待删除元素
{
last->bh.ptr[ord(key[i-1])]=NULL;
free(p);
return OK;
}
else return ERROR; //没找到待删除元素
}//TrieTree_Delete_Key
9.44
void Print_Hash(HashTable H)//按第一个字母顺序输出Hash表中的所有关键字,其中处理冲突采用线性探测开放定址法
{
for(i=1;i<=26;i++)
for(j=i;H.elem[j].key;j=(j+1)%hashsize[sizeindex]) //线性探测
if(H(H.elem[j].key)==i) printf("%s\n",H.elem[j]);
}//Print_Hash
int H(char *s)//求Hash函数
{
if(s) return s[0]-96; //求关键字第一个字母的字母序号(小写)
else return 0;
}//H
9.45
typedef *LNode[MAXSIZE] CHashTable; //链地址Hash表类型
Status Build_Hash(CHashTable &T,int m)//输入一组关键字,建立Hash表,表长为m,用链地址法处理冲突.
{
if(m<1) return ERROR;
T=malloc(m*sizeof(WORD)); //建立表头指针向量
for(i=0;i<m;i++) T[i]=NULL;
while((key=Inputkey())!=NULL) //假定Inputkey函数用于从键盘输入关键字
{
q=(LNode*)malloc(sizeof(LNode));
q->data=key;q->next=NULL;
n=H(key);
if(!T[n]) T[n]=q; //作为链表的第一个结点
else
{
for(p=T[n];p->next;p=p->next);
p->next=q; //插入链表尾部.本算法不考虑排序问题.
}
}//while
return OK;
}//Build_Hash
9.46
Status Locate_Hash(HashTable H,int row,int col,KeyType key,int &k)//根据行列值在Hash表表示的稀疏矩阵中确定元素key的位置k
{
h=2*(100*(row/10)+col/10); //作者设计的Hash函数
while(H.elem[h].key&&!EQ(H.elem[h].key,key))
h=(h+1)%20000;
if(EQ(H.elem[h].key,key)) k=h;
else k=NULL;
}//Locate_Hash
分析:本算法所使用的Hash表长20000,装填因子为50%,Hash函数为行数前两位和列数前两位所组成的四位数再乘以二,用线性探测法处理冲突.当矩阵的元素是随机分布时,查找的时间复杂度为O(1).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -