⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex.cs

📁 C#写的复数和傅立叶变换算法
💻 CS
字号:
/*
 * BSD Licence:
 * Copyright (c) 2001, 2002 Ben Houston [ ben@exocortex.org ]
 * Exocortex Technologies [ www.exocortex.org ]
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, 
 * this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright 
 * notice, this list of conditions and the following disclaimer in the 
 * documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the <ORGANIZATION> nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;


namespace Exocortex.DSP {

	// Comments? Questions? Bugs? Tell Ben Houston at ben@exocortex.org
	// Version: May 4, 2002

	/// <summary>
	/// <p>A double-precision complex number representation.</p>
	/// </summary>
	[StructLayout(LayoutKind.Sequential)]
	public struct Complex : IComparable, ICloneable {

		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// The real component of the complex number
		/// </summary>
		public double Re;

		/// <summary>
		/// The imaginary component of the complex number
		/// </summary>
		public double Im;

		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Create a complex number from a real and an imaginary component
		/// </summary>
		/// <param name="real"></param>
		/// <param name="imaginary"></param>
		public Complex( double real, double imaginary ) {
			this.Re		= (double) real;
			this.Im	= (double) imaginary;
		}

		/// <summary>
		/// Create a complex number based on an existing complex number
		/// </summary>
		/// <param name="c"></param>
		public Complex( Complex c ) {
			this.Re		= c.Re;
			this.Im	= c.Im;
		}

		/// <summary>
		/// Create a complex number from a real and an imaginary component
		/// </summary>
		/// <param name="real"></param>
		/// <param name="imaginary"></param>
		/// <returns></returns>
		static public Complex	FromRealImaginary( double real, double imaginary ) {
			Complex c;
			c.Re		= (double) real;
			c.Im = (double) imaginary;
			return c;
		}

		/// <summary>
		/// Create a complex number from a modulus (length) and an argument (radian)
		/// </summary>
		/// <param name="modulus"></param>
		/// <param name="argument"></param>
		/// <returns></returns>
		static public Complex	FromModulusArgument( double modulus, double argument ) {
			Complex c;
			c.Re		= (double)( modulus * System.Math.Cos( argument ) );
			c.Im	= (double)( modulus * System.Math.Sin( argument ) );
			return c;
		}
		
		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		object	ICloneable.Clone() {
			return	new Complex( this );
		}
		/// <summary>
		/// Clone the complex number
		/// </summary>
		/// <returns></returns>
		public Complex	Clone() {
			return	new Complex( this );
		}
		
		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// The modulus (length) of the complex number
		/// </summary>
		/// <returns></returns>
		public double	GetModulus() {
			double	x	= this.Re;
			double	y	= this.Im;
			return	(double) Math.Sqrt( x*x + y*y );
		}

		/// <summary>
		/// The squared modulus (length^2) of the complex number
		/// </summary>
		/// <returns></returns>
		public double	GetModulusSquared() {
			double	x	= this.Re;
			double	y	= this.Im;
			return	(double) x*x + y*y;
		}

		/// <summary>
		/// The argument (radians) of the complex number
		/// </summary>
		/// <returns></returns>
		public double	GetArgument() {
			return (double) Math.Atan2( this.Im, this.Re );
		}

		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Get the conjugate of the complex number
		/// </summary>
		/// <returns></returns>
		public Complex GetConjugate() {
			return FromRealImaginary( this.Re, -this.Im );
		}

		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Scale the complex number to 1.
		/// </summary>
		public void Normalize() {
			double	modulus = this.GetModulus();
			if( modulus == 0 ) {
				throw new DivideByZeroException( "Can not normalize a complex number that is zero." );
			}
			this.Re	= (double)( this.Re / modulus );
			this.Im	= (double)( this.Im / modulus );
		}

		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Convert to a from double precision complex number to a single precison complex number
		/// </summary>
		/// <param name="cF"></param>
		/// <returns></returns>
		public static explicit operator Complex ( ComplexF cF ) {
			Complex c;
			c.Re	= (double) cF.Re;
			c.Im	= (double) cF.Im;
			return c;
		}
		
		/// <summary>
		/// Convert from a single precision real number to a complex number
		/// </summary>
		/// <param name="d"></param>
		/// <returns></returns>
		public static explicit operator Complex ( double d ) {
			Complex c;
			c.Re	= (double) d;
			c.Im	= (double) 0;
			return c;
		}

		/// <summary>
		/// Convert from a single precision complex to a real number
		/// </summary>
		/// <param name="c"></param>
		/// <returns></returns>
		public static explicit operator double ( Complex c ) {
			return (double) c.Re;
		}
		
		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Are these two complex numbers equivalent?
		/// </summary>
		/// <param name="a"></param>
		/// <param name="b"></param>
		/// <returns></returns>
		public static bool	operator==( Complex a, Complex b ) {
			return	( a.Re == b.Re ) && ( a.Im == b.Im );
		}

		/// <summary>
		/// Are these two complex numbers different?
		/// </summary>
		/// <param name="a"></param>
		/// <param name="b"></param>
		/// <returns></returns>
		public static bool	operator!=( Complex a, Complex b ) {
			return	( a.Re != b.Re ) || ( a.Im != b.Im );
		}

		/// <summary>
		/// Get the hash code of the complex number
		/// </summary>
		/// <returns></returns>
		public override int		GetHashCode() {
			return	( this.Re.GetHashCode() ^ this.Im.GetHashCode() );
		}

		/// <summary>
		/// Is this complex number equivalent to another object?
		/// </summary>
		/// <param name="o"></param>
		/// <returns></returns>
		public override bool	Equals( object o ) {
			if( o is Complex ) {
				Complex c = (Complex) o;
				return   ( this == c );
			}
			return	false;
		}

		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// Compare to other complex numbers or real numbers
		/// </summary>
		/// <param name="o"></param>
		/// <returns></returns>
		public int	CompareTo( object o ) {
			if( o == null ) {
				return 1;  // null sorts before current
			}
			if( o is Complex ) {
				return	this.GetModulus().CompareTo( ((Complex)o).GetModulus() );
			}
			if( o is double ) {
				return	this.GetModulus().CompareTo( (double)o );
			}
			if( o is ComplexF ) {
				return	this.GetModulus().CompareTo( ((ComplexF)o).GetModulus() );
			}
			if( o is float ) {
				return	this.GetModulus().CompareTo( (float)o );
			}
			throw new ArgumentException();
		}

		//-----------------------------------------------------------------------------------
		//-----------------------------------------------------------------------------------

		/// <summary>
		/// This operator doesn't do much. :-)
		/// </summary>
		/// <param name="a"></param>
		/// <returns></returns>
		public static Complex operator+( Complex a ) {
			return a;
		}

		/// <summary>
		/// Negate the complex number
		/// </summary>
		/// <param name="a"></param>
		/// <returns></returns>
		public static Complex operator-( Complex a ) {
			a.Re	= -a.Re;
			a.Im	= -a.Im;
			return a;
		}

		/// <summary>
		/// Add a complex number to a real
		/// </summary>
		/// <param name="a"></param>
		/// <param name="f"></param>
		/// <returns></returns>
		public static Complex operator+( Complex a, double f ) {
			a.Re	= (double)( a.Re + f );
			return a;
		}

		/// <summary>
		/// Add a real to a complex number
		/// </summary>
		/// <param name="f"></param>
		/// <param name="a"></param>
		/// <returns></returns>
		public static Complex operator+( double f, Complex a ) {
			a.Re	= (double)( a.Re + f );
			return a;
		}

		/// <summary>
		/// Add to complex numbers
		/// </summary>
		/// <param name="a"></param>
		/// <param name="b"></param>
		/// <returns></returns>
		public static Complex operator+( Complex a, Complex b ) {
			a.Re	= a.Re + b.Re;
			a.Im	= a.Im + b.Im;
			return a;
		}

		/// <summary>
		/// Subtract a real from a complex number
		/// </summary>
		/// <param name="a"></param>
		/// <param name="f"></param>
		/// <returns></returns>
		public static Complex operator-( Complex a, double f ) {
			a.Re	= (double)( a.Re - f );
			return a;
		}

		/// <summary>
		/// Subtract a complex number from a real
		/// </summary>
		/// <param name="f"></param>
		/// <param name="a"></param>
		/// <returns></returns>
		public static Complex operator-( double f, Complex a ) {
			a.Re	= (float)( f - a.Re );
			a.Im	= (float)( 0 - a.Im );
			return a;
		}

		/// <summary>
		/// Subtract two complex numbers
		/// </summary>
		/// <param name="a"></param>
		/// <param name="b"></param>
		/// <returns></returns>
		public static Complex operator-( Complex a, Complex b ) {
			a.Re	= a.Re - b.Re;
			a.Im	= a.Im - b.Im;
			return a;
		}

		/// <summary>
		/// Multiply a complex number by a real
		/// </summary>
		/// <param name="a"></param>
		/// <param name="f"></param>
		/// <returns></returns>
		public static Complex operator*( Complex a, double f ) {
			a.Re	= (double)( a.Re * f );
			a.Im	= (double)( a.Im * f );
			return a;
		}
		
		/// <summary>
		/// Multiply a real by a complex number
		/// </summary>
		/// <param name="f"></param>
		/// <param name="a"></param>
		/// <returns></returns>
		public static Complex operator*( double f, Complex a ) {
			a.Re	= (double)( a.Re * f );
			a.Im	= (double)( a.Im * f );
			
			return a;
		}
		
		/// <summary>
		/// Multiply two complex numbers together
		/// </summary>
		/// <param name="a"></param>
		/// <param name="b"></param>
		/// <returns></returns>
		public static Complex operator*( Complex a, Complex b ) {
			// (x + yi)(u + vi) = (xu 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -