⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cryptlib.h

📁 一个DES,RSA,MD5,RC4等加密算法的源码
💻 H
📖 第 1 页 / 共 3 页
字号:
// cryptlib.h - written and placed in the public domain by Wei Dai
/*! \file
 	This file contains the declarations for the abstract base
	classes that provide a uniform interface to this library.
*/

/*!	\mainpage <a href="http://www.cryptopp.com">Crypto++</a> Reference Manual
<dl>
<dt>Abstract Base Classes<dd>
	cryptlib.h
<dt>Algebraic Structures<dd>
	Integer, PolynomialMod2, PolynomialOver, RingOfPolynomialsOver,
	ModularArithmetic, MontgomeryRepresentation, GFP2_ONB,
	GF2NP, GF256, GF2_32, EC2N, ECP
<dt>Block Ciphers (in ECB mode)<dd>
	3way.h, blowfish.h, cast.h, des.h, diamond.h, gost.h,
	idea.h, lubyrack.h, mars.h, mdc.h,
	rc2.h, rc5.h, rc6.h, rijndael.h, safer.h, serpent.h, shark.h, skipjack.h,
	square.h, tea.h, twofish.h
<dt>Block Cipher Modes<dd>
	modes.h, cbc.h
<dt>Compression<dd>
	Deflator, Inflator, Gzip, Gunzip, ZlibCompressor, ZlibDecompressor
<dt>Secret Sharing and Information Dispersal<dd>
	SecretSharing, SecretRecovery, InformationDispersal, InformationRecovery
<dt>Stream Ciphers<dd>
	ARC4, PanamaCipher, BlumBlumShub, SEAL, SapphireEncryption, WAKEEncryption
<dt>Hash Functions<dd>
	HAVAL, MD2, MD5, PanamaHash, RIPEMD160, SHA, SHA256, SHA384, SHA512, Tiger
<dt>Non-Cryptographic Checksums<dd>
	CRC32, Adler32
<dt>Message Authentication Codes<dd>
	MD5MAC, XMACC, HMAC, CBC_MAC, DMAC, PanamaMAC
<dt>Random Number Generators<dd>
	NullRNG, LC_RNG, RandomPool, BlockingRng, NonblockingRng, AutoSeededRandomPool
<dt>Public Key Cryptography<dd>
	blumgold.h, dh.h, dh2.h, dsa.h, eccrypto.h, luc.h, mqv.h,
	nr.h, rsa.h, rabin.h, rw.h, xtrcrypt.h
<dt>Input Source Classes<dd>
	StringSource, FileSource, SocketSource, WindowsPipeSource, RandomNumberSource
<dt>Output Sink Classes<dd>
	StringSinkTemplate, ArraySink, FileSink, SocketSink, WindowsPipeSink
<dt>Filter Wrappers<dd>
	StreamCipherFilter, HashFilter, HashVerifier, SignerFilter, VerifierFilter
<dt>Binary to Text Encoders and Decoders<dd>
	HexEncoder, HexDecoder, Base64Encoder, Base64Decoder
<dt>Wrappers for OS features<dd>
	Timer, Socket, WindowsHandle, WindowsReadPipe, WindowsWritePipe
</dl>

<p>This reference manual is very much a work in progress. Many classes are still lacking detailed descriptions.
<p>Click <a href="CryptoPPRef.zip">here</a> to download a zip archive containing this manual.
<p>Thanks to Ryan Phillips for providing the Doxygen configuration file
and getting me started with this manual.
*/

#ifndef CRYPTOPP_CRYPTLIB_H
#define CRYPTOPP_CRYPTLIB_H

#include "config.h"
#include <limits.h>
#include <exception>
#include <string>

NAMESPACE_BEGIN(CryptoPP)

//! base class for all exceptions thrown by Crypto++

class Exception : public std::exception
{
public:
	explicit Exception(const std::string &s) : m_what(s) {}
	virtual ~Exception() throw() {}
	const char *what() const throw() {return (m_what.c_str());}
	const std::string &GetWhat() const {return m_what;}
	void SetWhat(const std::string &s) {m_what = s;}

private:
	std::string m_what;
};

//! used to specify a direction for a cipher to operate in (encrypt or decrypt)
enum CipherDir {
	//!
	ENCRYPTION,
	//!
	DECRYPTION};


//! abstract base class for block ciphers

/*! All classes derived from BlockTransformation are block ciphers
	in ECB mode (for example the DESEncryption class), which are stateless.
	These classes should not be used directly, but only in combination with
	a mode class (see CipherMode).

	Note: BlockTransformation objects may assume that pointers to input and
	output blocks are aligned on 32-bit word boundaries.
*/
class BlockTransformation
{
public:
	//!
	virtual ~BlockTransformation() {}

	//! encrypt or decrypt one block in place
	/*! \pre size of inoutBlock == BlockSize() */
	virtual void ProcessBlock(byte *inoutBlock) const =0;

	//! encrypt or decrypt one block, may assume inBlock != outBlock
	/*! \pre size of inBlock and outBlock == BlockSize() */
	virtual void ProcessBlock(const byte *inBlock, byte *outBlock) const =0;

	//! block size of the cipher in bytes
	virtual unsigned int BlockSize() const =0;
};

//! provides an implementation of BlockSize()
template <unsigned int N>
class FixedBlockSize : public BlockTransformation
{
public:
	enum {BLOCKSIZE = N};
	virtual unsigned int BlockSize() const {return BLOCKSIZE;}
};

//! abstract base class for stream ciphers

class StreamCipher
{
public:
	//!
	virtual ~StreamCipher() {}

	//! encrypt or decrypt one byte
	virtual byte ProcessByte(byte input) =0;

	//! encrypt or decrypt an array of bytes of specified length in place
	virtual void ProcessString(byte *inoutString, unsigned int length);
	//! encrypt or decrypt an array of bytes of specified length, may assume inString != outString
	virtual void ProcessString(byte *outString, const byte *inString, unsigned int length);
};

//! abstract base class for random access stream ciphers

class RandomAccessStreamCipher : public virtual StreamCipher
{
public:
	//!
	virtual ~RandomAccessStreamCipher() {}
	/*/ specify that the next byte to be processed is at absolute position n
		in the plaintext/ciphertext stream */
	virtual void Seek(unsigned long n) =0;
};

//! abstract base class for random number generators

/*! All return values are uniformly distributed over the range specified.
*/
class RandomNumberGenerator
{
public:
	//!
	virtual ~RandomNumberGenerator() {}

	//! generate new random byte and return it
	virtual byte GenerateByte() =0;

	//! generate new random bit and return it
	/*! Default implementation is to call GenerateByte() and return its parity. */
	virtual unsigned int GenerateBit();

	//! generate a random 32 bit word in the range min to max, inclusive
	virtual word32 GenerateWord32(word32 a=0, word32 b=0xffffffffL);

	//! generate random array of bytes
	//* Default implementation is to call GenerateByte() size times.
	virtual void GenerateBlock(byte *output, unsigned int size);

	//! randomly shuffle the specified array, resulting permutation is uniformly distributed
	template <class IT> void Shuffle(IT begin, IT end)
	{
		for (; begin != end; ++begin)
			std::iter_swap(begin, begin + GenerateWord32(0, end-begin-1));
	}

	// for backwards compatibility, maybe be remove later
	byte GetByte() {return GenerateByte();}
	unsigned int GetBit() {return GenerateBit();}
	word32 GetLong(word32 a=0, word32 b=0xffffffffL) {return GenerateWord32(a, b);}
	word16 GetShort(word16 a=0, word16 b=0xffff) {return (word16)GenerateWord32(a, b);}
	void GetBlock(byte *output, unsigned int size) {GenerateBlock(output, size);}
};

//! abstract base class for hash functions

/*! HashModule objects are stateful.  They are created in an initial state,
	change state as Update() is called, and return to the initial
	state when Final() is called.  This interface allows a large message to
	be hashed in pieces by calling Update() on each piece followed by
	calling Final().
*/
class HashModule
{
public:
	//!
	virtual ~HashModule() {}

	//! process more input
	virtual void Update(const byte *input, unsigned int length) =0;

	/*/ calculate hash for the current message (the concatenation of all
		inputs passed in via Update()), then reinitialize the object */
	//* Precondition: size of digest == DigestSize().
	virtual void Final(byte *digest) =0;

	//! size of the hash returned by Final()
	virtual unsigned int DigestSize() const =0;

	//! use this if your input is short and you don't want to call Update() and Final() seperately
	virtual void CalculateDigest(byte *digest, const byte *input, int length)
		{Update(input, length); Final(digest);}

	//! verify that digest is a valid digest for the current message, then reinitialize the object
	/*! Default implementation is to call Final() and do a bitwise comparison
		between its output and digest. */
	virtual bool Verify(const byte *digest);

	//! use this if your input is short and you don't want to call Update() and Verify() seperately
	virtual bool VerifyDigest(const byte *digest, const byte *input, int length)
		{Update(input, length); return Verify(digest);}
};

//! abstract base class for message authentication codes

/*! The main differences between a MAC and an hash function (in terms of
	programmatic interface) is that a MAC is keyed, and that calculating
	a MAC for the same message twice may produce two different results so
	verifying a MAC may not be simply recalculating it and doing a bitwise
	comparison.
*/
class MessageAuthenticationCode : public virtual HashModule
{
public:
	//!
	virtual ~MessageAuthenticationCode() {}
};

//! abstract base class for buffered transformations

/*! BufferedTransformation is a generalization of BlockTransformation,
	StreamCipher, and HashModule.

	A buffered transformation is an object that takes a stream of bytes
	as input (this may be done in stages), does some computation on them, and
	then places the result into an internal buffer for later retrieval.  Any
	partial result already in the output buffer is not modified by further
	input.

	Computation is generally done as soon as possible, but some buffering
	on the input may be done for performance reasons.
	\nosubgrouping
*/
class BufferedTransformation
{
public:
	//!
	virtual ~BufferedTransformation() {}

	//!	\name INPUT
	//@{
		//! input a byte for processing
		virtual void Put(byte inByte) =0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -