📄 laguerre.c
字号:
/* specfunc/laguerre.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_exp.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_sf_laguerre.h>#include "error.h"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* based on the large 2b-4a asymptotic for 1F1 * [Abramowitz+Stegun, 13.5.21] */staticintlaguerre_large_n(const int n, const double alpha, const double x, gsl_sf_result * result){ const double a = -n; const double b = alpha + 1.0; const double eta = 2.0*b - 4.0*a; const double cos2th = x/eta; const double sin2th = 1.0 - cos2th; const double th = acos(sqrt(cos2th)); const double pre_h = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th; gsl_sf_result lg_b; gsl_sf_result lnfact; int stat_lg = gsl_sf_lngamma_e(b+n, &lg_b); int stat_lf = gsl_sf_lnfact_e(n, &lnfact); double pre_term1 = 0.5*(1.0-b)*log(0.25*x*eta); double pre_term2 = 0.25*log(pre_h); double lnpre_val = lg_b.val - lnfact.val + 0.5*x + pre_term1 - pre_term2; double lnpre_err = lg_b.err + lnfact.err + GSL_DBL_EPSILON * (fabs(pre_term1)+fabs(pre_term2)); double ser_term1 = sin(a*M_PI); double ser_term2 = sin(0.25*eta*(2.0*th - sin(2.0*th)) + 0.25*M_PI); double ser_val = ser_term1 + ser_term2; double ser_err = GSL_DBL_EPSILON * (fabs(ser_term1) + fabs(ser_term2)); int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, ser_val, ser_err, result); result->err += 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_lf, stat_lg);}/* Evaluate polynomial based on confluent hypergeometric representation. * * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x) * * assumes n > 0 and a != negative integer greater than -n */staticintlaguerre_n_cp(const int n, const double a, const double x, gsl_sf_result * result){ gsl_sf_result lnfact; gsl_sf_result lg1; gsl_sf_result lg2; double s1, s2; int stat_f = gsl_sf_lnfact_e(n, &lnfact); int stat_g1 = gsl_sf_lngamma_sgn_e(a+1.0+n, &lg1, &s1); int stat_g2 = gsl_sf_lngamma_sgn_e(a+1.0, &lg2, &s2); double poly_1F1_val = 1.0; double poly_1F1_err = 0.0; int stat_e; int k; double lnpre_val = (lg1.val - lg2.val) - lnfact.val; double lnpre_err = lg1.err + lg2.err + lnfact.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); for(k=n-1; k>=0; k--) { double t = (-n+k)/(a+1.0+k) * (x/(k+1)); double r = t + 1.0/poly_1F1_val; if(r > 0.9*GSL_DBL_MAX/poly_1F1_val) { /* internal error only, don't call the error handler */ INTERNAL_OVERFLOW_ERROR(result); } else { /* Collect the Horner terms. */ poly_1F1_val = 1.0 + t * poly_1F1_val; poly_1F1_err += GSL_DBL_EPSILON + fabs(t) * poly_1F1_err; } } stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, poly_1F1_val, poly_1F1_err, result); return GSL_ERROR_SELECT_4(stat_e, stat_f, stat_g1, stat_g2);}/* Evaluate the polynomial based on the confluent hypergeometric * function in a safe way, with no restriction on the arguments. * * assumes x != 0 */staticintlaguerre_n_poly_safe(const int n, const double a, const double x, gsl_sf_result * result){ const double b = a + 1.0; const double mx = -x; const double tc_sgn = (x < 0.0 ? 1.0 : (GSL_IS_ODD(n) ? -1.0 : 1.0)); gsl_sf_result tc; int stat_tc = gsl_sf_taylorcoeff_e(n, fabs(x), &tc); if(stat_tc == GSL_SUCCESS) { double term = tc.val * tc_sgn; double sum_val = term; double sum_err = tc.err; int k; for(k=n-1; k>=0; k--) { term *= ((b+k)/(n-k))*(k+1.0)/mx; sum_val += term; sum_err += 4.0 * GSL_DBL_EPSILON * fabs(term); } result->val = sum_val; result->err = sum_err + 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(stat_tc == GSL_EOVRFLW) { result->val = 0.0; /* FIXME: should be Inf */ result->err = 0.0; return stat_tc; } else { result->val = 0.0; result->err = 0.0; return stat_tc; }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*/intgsl_sf_laguerre_1_e(const double a, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ { result->val = 1.0 + a - x; result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x)); return GSL_SUCCESS; }}intgsl_sf_laguerre_2_e(const double a, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(a == -2.0) { result->val = 0.5*x*x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double c0 = 0.5 * (2.0+a)*(1.0+a); double c1 = -(2.0+a); double c2 = -0.5/(2.0+a); result->val = c0 + c1*x*(1.0 + c2*x); result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * (1.0 + 2.0 * fabs(c2*x))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}intgsl_sf_laguerre_3_e(const double a, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(a == -2.0) { double x2_6 = x*x/6.0; result->val = x2_6 * (3.0 - x); result->err = x2_6 * (3.0 + fabs(x)) * 2.0 * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(a == -3.0) { result->val = -x*x/6.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double c0 = (3.0+a)*(2.0+a)*(1.0+a) / 6.0; double c1 = -c0 * 3.0 / (1.0+a); double c2 = -1.0/(2.0+a); double c3 = -1.0/(3.0*(3.0+a)); result->val = c0 + c1*x*(1.0 + c2*x*(1.0 + c3*x)); result->err = 1.0 + 2.0 * fabs(c3*x); result->err = 1.0 + 2.0 * fabs(c2*x) * result->err; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * result->err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; }}int gsl_sf_laguerre_n_e(const int n, const double a, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(n < 0) { DOMAIN_ERROR(result); } else if(n == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(n == 1) { result->val = 1.0 + a - x; result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x)); return GSL_SUCCESS; } else if(x == 0.0) { double product = a + 1.0; int k; for(k=2; k<=n; k++) { product *= (a + k)/k; } result->val = product; result->err = 2.0 * (n + 1.0) * GSL_DBL_EPSILON * fabs(product) + GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 0.0 && a > -1.0) { /* In this case all the terms in the polynomial * are of the same sign. Note that this also * catches overflows correctly. */ return laguerre_n_cp(n, a, x, result); } else if(n < 5 || (x > 0.0 && a < -n-1)) { /* Either the polynomial will not lose too much accuracy * or all the terms are negative. In any case, * the error estimate here is good. We try both * explicit summation methods, as they have different * characteristics. One may underflow/overflow while the * other does not. */ if(laguerre_n_cp(n, a, x, result) == GSL_SUCCESS) return GSL_SUCCESS; else return laguerre_n_poly_safe(n, a, x, result); } else if(n > 1.0e+07 && x > 0.0 && a > -1.0 && x < 2.0*(a+1.0)+4.0*n) { return laguerre_large_n(n, a, x, result); } else if(a > 0.0 || (x > 0.0 && a < -n-1)) { gsl_sf_result lg2; int stat_lg2 = gsl_sf_laguerre_2_e(a, x, &lg2); double Lkm1 = 1.0 + a - x; double Lk = lg2.val; double Lkp1; int k; for(k=2; k<n; k++) { Lkp1 = (-(k+a)*Lkm1 + (2.0*k+a+1.0-x)*Lk)/(k+1.0); Lkm1 = Lk; Lk = Lkp1; } result->val = Lk; result->err = (fabs(lg2.err/lg2.val) + GSL_DBL_EPSILON) * n * fabs(Lk); return stat_lg2; } else { /* Despair... or magic? */ return laguerre_n_poly_safe(n, a, x, result); }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_laguerre_1(double a, double x){ EVAL_RESULT(gsl_sf_laguerre_1_e(a, x, &result));}double gsl_sf_laguerre_2(double a, double x){ EVAL_RESULT(gsl_sf_laguerre_2_e(a, x, &result));}double gsl_sf_laguerre_3(double a, double x){ EVAL_RESULT(gsl_sf_laguerre_3_e(a, x, &result));}double gsl_sf_laguerre_n(int n, double a, double x){ EVAL_RESULT(gsl_sf_laguerre_n_e(n, a, x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -