📄 coulomb.c
字号:
v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val; v_mm1 = tex*(v_mm2 - 2.0*u_mm2); f_sum = u_mm2 + u_mm1; g_sum = v_mm2 + v_mm1; while(m < max_iter) { double m2 = m*m; u_m = (tex*u_mm1 - x2*u_mm2)/m2; v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2; f_sum += u_m; g_sum += v_m; if( f_sum != 0.0 && g_sum != 0.0 && (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break; u_mm2 = u_mm1; u_mm1 = u_m; v_mm2 = v_mm1; v_mm1 = v_m; m++; } F->val = Cmhalf.val * rx * f_sum; F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val); tmp1 = f_sum*log(x); G->val = -rx*(tmp1 + g_sum)/Cmhalf.val; G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val); if(m == max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return stat_CL;}/* Evolve the backwards recurrence for F,F'. * * F_{lam-1} = (S_lam F_lam + F_lam') / R_lam * F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam) * where * R_lam = sqrt(1 + (eta/lam)^2) * S_lam = lam/x + eta/lam * */staticintcoulomb_F_recur(double lam_min, int kmax, double eta, double x, double F_lam_max, double Fp_lam_max, double * F_lam_min, double * Fp_lam_min ){ double x_inv = 1.0/x; double fcl = F_lam_max; double fpl = Fp_lam_max; double lam_max = lam_min + kmax; double lam = lam_max; int k; for(k=kmax-1; k>=0; k--) { double el = eta/lam; double rl = sqrt(1.0 + el*el); double sl = el + lam*x_inv; double fc_lm1; fc_lm1 = (fcl*sl + fpl)/rl; fpl = fc_lm1*sl - fcl*rl; fcl = fc_lm1; lam -= 1.0; } *F_lam_min = fcl; *Fp_lam_min = fpl; return GSL_SUCCESS;}/* Evolve the forward recurrence for G,G'. * * G_{lam+1} = (S_lam G_lam - G_lam')/R_lam * G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1} * * where S_lam and R_lam are as above in the F recursion. */staticintcoulomb_G_recur(const double lam_min, const int kmax, const double eta, const double x, const double G_lam_min, const double Gp_lam_min, double * G_lam_max, double * Gp_lam_max ){ double x_inv = 1.0/x; double gcl = G_lam_min; double gpl = Gp_lam_min; double lam = lam_min + 1.0; int k; for(k=1; k<=kmax; k++) { double el = eta/lam; double rl = sqrt(1.0 + el*el); double sl = el + lam*x_inv; double gcl1 = (sl*gcl - gpl)/rl; gpl = rl*gcl - sl*gcl1; gcl = gcl1; lam += 1.0; } *G_lam_max = gcl; *Gp_lam_max = gpl; return GSL_SUCCESS;}/* Evaluate the first continued fraction, giving * the ratio F'/F at the upper lambda value. * We also determine the sign of F at that point, * since it is the sign of the last denominator * in the continued fraction. */staticintcoulomb_CF1(double lambda, double eta, double x, double * fcl_sign, double * result, int * count ){ const double CF1_small = 1.e-30; const double CF1_abort = 1.0e+05; const double CF1_acc = 2.0*GSL_DBL_EPSILON; const double x_inv = 1.0/x; const double px = lambda + 1.0 + CF1_abort; double pk = lambda + 1.0; double F = eta/pk + pk*x_inv; double D, C; double df; *fcl_sign = 1.0; *count = 0; if(fabs(F) < CF1_small) F = CF1_small; D = 0.0; C = F; do { double pk1 = pk + 1.0; double ek = eta / pk; double rk2 = 1.0 + ek*ek; double tk = (pk + pk1)*(x_inv + ek/pk1); D = tk - rk2 * D; C = tk - rk2 / C; if(fabs(C) < CF1_small) C = CF1_small; if(fabs(D) < CF1_small) D = CF1_small; D = 1.0/D; df = D * C; F = F * df; if(D < 0.0) { /* sign of result depends on sign of denominator */ *fcl_sign = - *fcl_sign; } pk = pk1; if( pk > px ) { *result = F; GSL_ERROR ("error", GSL_ERUNAWAY); } ++(*count); } while(fabs(df-1.0) > CF1_acc); *result = F; return GSL_SUCCESS;}#if 0staticintold_coulomb_CF1(const double lambda, double eta, double x, double * fcl_sign, double * result ){ const double CF1_abort = 1.e5; const double CF1_acc = 10.0*GSL_DBL_EPSILON; const double x_inv = 1.0/x; const double px = lambda + 1.0 + CF1_abort; double pk = lambda + 1.0; double D; double df; double F; double p; double pk1; double ek; double fcl = 1.0; double tk; while(1) { ek = eta/pk; F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv; pk1 = pk + 1.0; if(fabs(eta*x + pk*pk1) > CF1_acc) break; fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1)); pk = 2.0 + pk; } D = 1.0/((pk + pk1)*(x_inv + ek/pk1)); df = -fcl*(1.0 + ek*ek)*D; if(fcl != 1.0) fcl = -1.0; if(D < 0.0) fcl = -fcl; F = F + df; p = 1.0; do { pk = pk1; pk1 = pk + 1.0; ek = eta / pk; tk = (pk + pk1)*(x_inv + ek/pk1); D = tk - D*(1.0+ek*ek); if(fabs(D) < sqrt(CF1_acc)) { p += 1.0; if(p > 2.0) { printf("HELP............\n"); } } D = 1.0/D; if(D < 0.0) { /* sign of result depends on sign of denominator */ fcl = -fcl; } df = df*(D*tk - 1.0); F = F + df; if( pk > px ) { GSL_ERROR ("error", GSL_ERUNAWAY); } } while(fabs(df) > fabs(F)*CF1_acc); *fcl_sign = fcl; *result = F; return GSL_SUCCESS;}#endif /* 0 *//* Evaluate the second continued fraction to * obtain the ratio * (G' + i F')/(G + i F) := P + i Q * at the specified lambda value. */staticintcoulomb_CF2(const double lambda, const double eta, const double x, double * result_P, double * result_Q, int * count ){ int status = GSL_SUCCESS; const double CF2_acc = 4.0*GSL_DBL_EPSILON; const double CF2_abort = 2.0e+05; const double wi = 2.0*eta; const double x_inv = 1.0/x; const double e2mm1 = eta*eta + lambda*(lambda + 1.0); double ar = -e2mm1; double ai = eta; double br = 2.0*(x - eta); double bi = 2.0; double dr = br/(br*br + bi*bi); double di = -bi/(br*br + bi*bi); double dp = -x_inv*(ar*di + ai*dr); double dq = x_inv*(ar*dr - ai*di); double A, B, C, D; double pk = 0.0; double P = 0.0; double Q = 1.0 - eta*x_inv; *count = 0; do { P += dp; Q += dq; pk += 2.0; ar += pk; ai += wi; bi += 2.0; D = ar*dr - ai*di + br; di = ai*dr + ar*di + bi; C = 1.0/(D*D + di*di); dr = C*D; di = -C*di; A = br*dr - bi*di - 1.; B = bi*dr + br*di; C = dp*A - dq*B; dq = dp*B + dq*A; dp = C; if(pk > CF2_abort) { status = GSL_ERUNAWAY; break; } ++(*count); } while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc); if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) { status = GSL_ELOSS; } *result_P = P; *result_Q = Q; return status;}/* WKB evaluation of F, G. Assumes 0 < x < turning point. * Overflows are trapped, GSL_EOVRFLW is signalled, * and an exponent is returned such that: * * result_F = fjwkb * exp(-exponent) * result_G = gjwkb * exp( exponent) * * See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV] * * Unfortunately, this is not very accurate in general. The * test cases typically have 3-4 digits of precision. One could * argue that this is ok for general use because, for instance, * F is exponentially small in this region and so the absolute * accuracy is still roughly acceptable. But it would be better * to have a systematic method for improving the precision. See * the Abad+Sesma method discussion below. */staticintcoulomb_jwkb(const double lam, const double eta, const double x, gsl_sf_result * fjwkb, gsl_sf_result * gjwkb, double * exponent){ const double llp1 = lam*(lam+1.0) + 6.0/35.0; const double llp1_eff = GSL_MAX(llp1, 0.0); const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff); const double sinh_arg = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x; const double sinh_inv = log(sinh_arg + sqrt(1.0 + sinh_arg*sinh_arg)); const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv); const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0); const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf)); double F = prefactor * 3.0/zeta_half; double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */ double F_exp; double G_exp; const double airy_scale_exp = phi; gsl_sf_result ai; gsl_sf_result bi; gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai); gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi); F *= ai.val; G *= bi.val; F_exp = log(F) - airy_scale_exp; G_exp = log(G) + airy_scale_exp; if(G_exp >= GSL_LOG_DBL_MAX) { fjwkb->val = F; gjwkb->val = G; fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */ gjwkb->err = 1.0e-3 * fabs(G); *exponent = airy_scale_exp; GSL_ERROR ("error", GSL_EOVRFLW); } else { fjwkb->val = exp(F_exp); gjwkb->val = exp(G_exp); fjwkb->err = 1.0e-3 * fabs(fjwkb->val); gjwkb->err = 1.0e-3 * fabs(gjwkb->val); *exponent = 0.0; return GSL_SUCCESS; }}/* Asymptotic evaluation of F and G below the minimal turning point. * * This is meant to be a drop-in replacement for coulomb_jwkb(). * It uses the expressions in [Abad+Sesma]. This requires some * work because I am not sure where it is valid. They mumble * something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1. * This seems true, but I thought the result was based on a uniform * expansion and could be controlled by simply using more terms. */#if 0staticintcoulomb_AS_xlt2eta(const double lam, const double eta, const double x, gsl_sf_result * f_AS, gsl_sf_result * g_AS, double * exponent){ /* no time to do this now... */}#endif /* 0 *//*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_coulomb_wave_FG_e(const double eta, const double x, const double lam_F, const int k_lam_G, /* lam_G = lam_F - k_lam_G */ gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G){ const double lam_G = lam_F - k_lam_G; if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) { GSL_SF_RESULT_SET(F, 0.0, 0.0); GSL_SF_RESULT_SET(Fp, 0.0, 0.0); GSL_SF_RESULT_SET(G, 0.0, 0.0); GSL_SF_RESULT_SET(Gp, 0.0, 0.0); *exp_F = 0.0; *exp_G = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(x == 0.0) { gsl_sf_result C0; CLeta(0.0, eta, &C0); GSL_SF_RESULT_SET(F, 0.0, 0.0); GSL_SF_RESULT_SET(Fp, 0.0, 0.0); GSL_SF_RESULT_SET(G, 0.0, 0.0); /* FIXME: should be Inf */ GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */ *exp_F = 0.0; *exp_G = 0.0; if(lam_F == 0.0){ GSL_SF_RESULT_SET(Fp, C0.val, C0.err); } if(lam_G == 0.0) { GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val)); } GSL_ERROR ("domain error", GSL_EDOM); /* After all, since we are asking for G, this is a domain error... */ } else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) { /* Reduce to a small lambda value and use the series * representations for F and G. We cannot allow eta to * be large and positive because the connection formula * for G_lam is badly behaved due to an underflow in sin(phi_lam) * [see coulomb_FG_series() and coulomb_connection() above]. * Note that large negative eta is ok however. */ const double SMALL = GSL_SQRT_DBL_EPSILON; const int N = (int)(lam_F + 0.5); const int span = GSL_MAX(k_lam_G, N); const double lam_min = lam_F - N; /* -1/2 <= lam_min < 1/2 */ double F_lam_F, Fp_lam_F;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -