📄 gsl_sf_dilog.h
字号:
/* specfunc/gsl_sf_dilog.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#ifndef __GSL_SF_DILOG_H__#define __GSL_SF_DILOG_H__#include <gsl/gsl_sf_result.h>#undef __BEGIN_DECLS#undef __END_DECLS#ifdef __cplusplus# define __BEGIN_DECLS extern "C" {# define __END_DECLS }#else# define __BEGIN_DECLS /* empty */# define __END_DECLS /* empty */#endif__BEGIN_DECLS/* Real part of DiLogarithm(x), for real argument. * In Lewin's notation, this is Li_2(x). * * Li_2(x) = - Re[ Integrate[ Log[1-s] / s, {s, 0, x}] ] * * Note that Im[Li_2(x)] = { 0 for x <= 1, -Pi*log(x) for x > 1 } */int gsl_sf_dilog_e(const double x, gsl_sf_result * result);double gsl_sf_dilog(const double x);/* DiLogarithm(z), for complex argument z = r Exp[i theta]. */int gsl_sf_complex_dilog_e(const double r, double theta, gsl_sf_result * result_re, gsl_sf_result * result_im);__END_DECLS#endif /* __GSL_SF_DILOG_H__ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -