⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ellint.c

📁 多个常用的特殊函数的例子
💻 C
📖 第 1 页 / 共 2 页
字号:
      double lamda, alfa, beta;      double epslon;      gsl_sf_result rcresult;      int rcstatus;      mu = (xn + yn + zn + pn + pn) * 0.2;      xndev = (mu - xn) / mu;      yndev = (mu - yn) / mu;      zndev = (mu - zn) / mu;      pndev = (mu - pn) / mu;      epslon = locMAX4(fabs(xndev), fabs(yndev), fabs(zndev), fabs(pndev));      if(epslon < errtol) break;      xnroot = sqrt(xn);      ynroot = sqrt(yn);      znroot = sqrt(zn);      lamda = xnroot * (ynroot + znroot) + ynroot * znroot;      alfa = pn * (xnroot + ynroot + znroot) + xnroot * ynroot * znroot;      alfa = alfa * alfa;      beta = pn * (pn + lamda) * (pn + lamda);      rcstatus = gsl_sf_ellint_RC_e(alfa, beta, mode, &rcresult);      if(rcstatus != GSL_SUCCESS) {        result->val = 0.0;	result->err = 0.0;        return rcstatus;      }      sigma  += power4 * rcresult.val;      power4 *= 0.25;      xn = (xn + lamda) * 0.25;      yn = (yn + lamda) * 0.25;      zn = (zn + lamda) * 0.25;      pn = (pn + lamda) * 0.25;    }        ea = xndev * (yndev + zndev) + yndev * zndev;    eb = xndev * yndev * zndev;    ec = pndev * pndev;    e2 = ea - 3.0 * ec;    e3 = eb + 2.0 * pndev * (ea - ec);    s1 = 1.0 + e2 * (- c1 + 0.75 * c3 * e2 - 1.5 * c4 * e3);    s2 = eb * (0.5 * c2 + pndev * (- c3 - c3 + pndev * c4));    s3 = pndev * ea * (c2 - pndev * c3) - c2 * pndev * ec;    result->val = 3.0 * sigma + power4 * (s1 + s2 + s3) / (mu * sqrt(mu));    result->err = prec * fabs(result->val);    return GSL_SUCCESS;  }  else {    DOMAIN_ERROR(result);  }}/* [Carlson, Numer. Math. 33 (1979) 1, (4.1)] */intgsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result){  double sin_phi  = sin(phi);  double sin2_phi = sin_phi*sin_phi;  double x = 1.0 - sin2_phi;  double y = 1.0 - k*k*sin2_phi;  gsl_sf_result rf;  int status = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf);  result->val = sin_phi * rf.val;  result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(sin_phi*rf.err);  return status;}/* [Carlson, Numer. Math. 33 (1979) 1, (4.2)] */intgsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result){  const double sin_phi  = sin(phi);  const double sin2_phi = sin_phi  * sin_phi;  const double x = 1.0 - sin2_phi;  const double y = 1.0 - k*k*sin2_phi;  if(x < GSL_DBL_EPSILON) {    return gsl_sf_ellint_Ecomp_e(k, mode, result);  }  else {    gsl_sf_result rf;    gsl_sf_result rd;    const double sin3_phi = sin2_phi * sin_phi;    const int rfstatus = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf);    const int rdstatus = gsl_sf_ellint_RD_e(x, y, 1.0, mode, &rd);    result->val  = sin_phi * rf.val - k*k/3.0 * sin3_phi * rd.val;    result->err  = GSL_DBL_EPSILON * fabs(sin_phi * rf.val);    result->err += fabs(sin_phi*rf.err);    result->err += k*k/3.0 * GSL_DBL_EPSILON * fabs(sin3_phi * rd.val);    result->err += k*k/3.0 * fabs(sin3_phi*rd.err);    return GSL_ERROR_SELECT_2(rfstatus, rdstatus);  }}/* [Carlson, Numer. Math. 33 (1979) 1, (4.3)] */intgsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result){  const double sin_phi  = sin(phi);  const double sin2_phi = sin_phi  * sin_phi;  const double sin3_phi = sin2_phi * sin_phi;  const double x = 1.0 - sin2_phi;  const double y = 1.0 - k*k*sin2_phi;  gsl_sf_result rf;  gsl_sf_result rj;  const int rfstatus = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf);  const int rjstatus = gsl_sf_ellint_RJ_e(x, y, 1.0, 1.0 + n*sin2_phi, mode, &rj);  result->val  = sin_phi * rf.val - n/3.0*sin3_phi * rj.val;  result->err  = GSL_DBL_EPSILON * fabs(sin_phi * rf.val);  result->err += n/3.0 * fabs(sin3_phi*rj.err);  return GSL_ERROR_SELECT_2(rfstatus, rjstatus);}/* [Carlson, Numer. Math. 33 (1979) 1, (4.4)] */intgsl_sf_ellint_D_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result){  const double sin_phi  = sin(phi);  const double sin2_phi = sin_phi  * sin_phi;  const double sin3_phi = sin2_phi * sin_phi;  const double x = 1.0 - sin2_phi;  const double y = 1.0 - k*k*sin2_phi;  gsl_sf_result rd;  const int status = gsl_sf_ellint_RD_e(x, y, 1.0, mode, &rd);  result->val = sin3_phi/3.0 * rd.val;  result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(sin3_phi/3.0 * rd.err);  return status;}/* [Carlson, Numer. Math. 33 (1979) 1, (4.5)] */intgsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result){  if(k*k >= 1.0) {    DOMAIN_ERROR(result);  }  else if(k*k >= 1.0 - GSL_SQRT_DBL_EPSILON) {    /* [Abramowitz+Stegun, 17.3.33] */    const double y = 1.0 - k*k;    const double a[] = { 1.38629436112, 0.09666344259, 0.03590092383 };    const double b[] = { 0.5, 0.12498593597, 0.06880248576 };    const double ta = a[0] + y*(a[1] + y*a[2]);    const double tb = -log(y) * (b[0] * y*(b[1] + y*b[2]));    result->val = ta + tb;    result->err = 2.0 * GSL_DBL_EPSILON * result->val;    return GSL_SUCCESS;  }  else {    /* This was previously computed as,         return gsl_sf_ellint_RF_e(0.0, 1.0 - k*k, 1.0, mode, result);       but this underestimated the total error for small k, since the        argument y=1-k^2 is not exact (there is an absolute error of       GSL_DBL_EPSILON near y=0 due to cancellation in the subtraction).       Taking the singular behavior of -log(y) above gives an error       of 0.5*epsilon/y near y=0. (BJG) */    double y = 1.0 - k*k;    int status = gsl_sf_ellint_RF_e(0.0, y, 1.0, mode, result);    result->err += 0.5 * GSL_DBL_EPSILON / y;    return status ;  }}/* [Carlson, Numer. Math. 33 (1979) 1, (4.6)] */intgsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result){  if(k*k >= 1.0) {    DOMAIN_ERROR(result);  }  else if(k*k >= 1.0 - GSL_SQRT_DBL_EPSILON) {    /* [Abramowitz+Stegun, 17.3.36] */    const double y = 1.0 - k*k;    const double a[] = { 0.44325141463, 0.06260601220, 0.04757383546 };    const double b[] = { 0.24998368310, 0.09200180037, 0.04069697526 };    const double ta = 1.0 + y*(a[0] + y*(a[1] + a[2]*y));    const double tb = -y*log(y) * (b[0] + y*(b[1] + b[2]*y));    result->val = ta + tb;    result->err = 2.0 * GSL_DBL_EPSILON * result->val;    return GSL_SUCCESS;  }  else {    gsl_sf_result rf;    gsl_sf_result rd;    const double y = 1.0 - k*k;    const int rfstatus = gsl_sf_ellint_RF_e(0.0, y, 1.0, mode, &rf);    const int rdstatus = gsl_sf_ellint_RD_e(0.0, y, 1.0, mode, &rd);    result->val = rf.val - k*k/3.0 * rd.val;    result->err = rf.err + k*k/3.0 * rd.err;    return GSL_ERROR_SELECT_2(rfstatus, rdstatus);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_Kcomp_e(k, mode, &result));}double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_Ecomp_e(k, mode, &result));}double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_F_e(phi, k, mode, &result));}double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_E_e(phi, k, mode, &result));}double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_P_e(phi, k, n, mode, &result));}double gsl_sf_ellint_D(double phi, double k, double n, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_D_e(phi, k, n, mode, &result));}double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_RC_e(x, y, mode, &result));}double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_RD_e(x, y, z, mode, &result));}double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_RF_e(x, y, z, mode, &result));}double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode){  EVAL_RESULT(gsl_sf_ellint_RJ_e(x, y, z, p, mode, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -