📄 bessel_k.c
字号:
/* specfunc/bessel_k.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_sf_bessel.h>#include "error.h"#include "check.h"#include "bessel.h"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* [Abramowitz+Stegun, 10.2.4 + 10.2.6] * with lmax=15, precision ~ 15D for x < 3 * * assumes l >= 1 */static int bessel_kl_scaled_small_x(int l, const double x, gsl_sf_result * result){ gsl_sf_result num_fact; double den = gsl_sf_pow_int(x, l+1); int stat_df = gsl_sf_doublefact_e((unsigned int) (2*l-1), &num_fact); if(stat_df != GSL_SUCCESS || den == 0.0) { OVERFLOW_ERROR(result); } else { const int lmax = 50; gsl_sf_result ipos_term; double ineg_term; double sgn = (GSL_IS_ODD(l) ? -1.0 : 1.0); double ex = exp(x); double t = 0.5*x*x; double sum = 1.0; double t_coeff = 1.0; double t_power = 1.0; double delta; int stat_il; int i; for(i=1; i<lmax; i++) { t_coeff /= i*(2*(i-l) - 1); t_power *= t; delta = t_power*t_coeff; sum += delta; if(fabs(delta/sum) < GSL_DBL_EPSILON) break; } stat_il = gsl_sf_bessel_il_scaled_e(l, x, &ipos_term); ineg_term = sgn * num_fact.val/den * sum; result->val = -sgn * 0.5*M_PI * (ex*ipos_term.val - ineg_term); result->val *= ex; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_il; }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_k0_scaled_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else { result->val = M_PI/(2.0*x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; }}int gsl_sf_bessel_k1_scaled_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < (M_SQRTPI+1.0)/(M_SQRT2*GSL_SQRT_DBL_MAX)) { OVERFLOW_ERROR(result); } else { result->val = M_PI/(2.0*x) * (1.0 + 1.0/x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; }}int gsl_sf_bessel_k2_scaled_e(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0/GSL_ROOT3_DBL_MAX) { OVERFLOW_ERROR(result); } else { result->val = M_PI/(2.0*x) * (1.0 + 3.0/x * (1.0 + 1.0/x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; }}int gsl_sf_bessel_kl_scaled_e(int l, const double x, gsl_sf_result * result){ if(l < 0 || x <= 0.0) { DOMAIN_ERROR(result); } else if(l == 0) { return gsl_sf_bessel_k0_scaled_e(x, result); } else if(l == 1) { return gsl_sf_bessel_k1_scaled_e(x, result); } else if(l == 2) { return gsl_sf_bessel_k2_scaled_e(x, result); } else if(x < 3.0) { return bessel_kl_scaled_small_x(l, x, result); } else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1)) { int status = gsl_sf_bessel_Knu_scaled_asympx_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else if(GSL_MIN(0.29/(l*l+1.0), 0.5/(l*l+1.0+x*x)) < GSL_ROOT3_DBL_EPSILON) { int status = gsl_sf_bessel_Knu_scaled_asymp_unif_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else { /* recurse upward */ gsl_sf_result r_bk; gsl_sf_result r_bkm; int stat_1 = gsl_sf_bessel_k1_scaled_e(x, &r_bk); int stat_0 = gsl_sf_bessel_k0_scaled_e(x, &r_bkm); double bkp; double bk = r_bk.val; double bkm = r_bkm.val; int j; for(j=1; j<l; j++) { bkp = (2*j+1)/x*bk + bkm; bkm = bk; bk = bkp; } result->val = bk; result->err = fabs(bk) * (fabs(r_bk.err/r_bk.val) + fabs(r_bkm.err/r_bkm.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_1, stat_0); }}int gsl_sf_bessel_kl_scaled_array(const int lmax, const double x, double * result_array){ if(lmax < 1 || x <= 0.0) { GSL_ERROR("domain error", GSL_EDOM); } else { int ell; double kellp1, kell, kellm1; gsl_sf_result r_kell; gsl_sf_result r_kellm1; gsl_sf_bessel_k1_scaled_e(x, &r_kell); gsl_sf_bessel_k0_scaled_e(x, &r_kellm1); kell = r_kell.val; kellm1 = r_kellm1.val; result_array[0] = kellm1; result_array[1] = kell; for(ell = 1; ell < lmax; ell++) { kellp1 = (2*ell+1)/x * kell + kellm1; result_array[ell+1] = kellp1; kellm1 = kell; kell = kellp1; } return GSL_SUCCESS; }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_k0_scaled(const double x){ EVAL_RESULT(gsl_sf_bessel_k0_scaled_e(x, &result));}double gsl_sf_bessel_k1_scaled(const double x){ EVAL_RESULT(gsl_sf_bessel_k1_scaled_e(x, &result));}double gsl_sf_bessel_k2_scaled(const double x){ EVAL_RESULT(gsl_sf_bessel_k2_scaled_e(x, &result));}double gsl_sf_bessel_kl_scaled(const int l, const double x){ EVAL_RESULT(gsl_sf_bessel_kl_scaled_e(l, x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -