⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_k.c

📁 多个常用的特殊函数的例子
💻 C
字号:
/* specfunc/bessel_k.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_sf_bessel.h>#include "error.h"#include "check.h"#include "bessel.h"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* [Abramowitz+Stegun, 10.2.4 + 10.2.6] * with lmax=15, precision ~ 15D for x < 3 * * assumes l >= 1 */static int bessel_kl_scaled_small_x(int l, const double x, gsl_sf_result * result){  gsl_sf_result num_fact;  double den  = gsl_sf_pow_int(x, l+1);  int stat_df = gsl_sf_doublefact_e((unsigned int) (2*l-1), &num_fact);  if(stat_df != GSL_SUCCESS || den == 0.0) {    OVERFLOW_ERROR(result);  }  else {    const int lmax = 50;    gsl_sf_result ipos_term;    double ineg_term;    double sgn = (GSL_IS_ODD(l) ? -1.0 : 1.0);    double ex  = exp(x);    double t = 0.5*x*x;    double sum = 1.0;    double t_coeff = 1.0;    double t_power = 1.0;    double delta;    int stat_il;    int i;    for(i=1; i<lmax; i++) {      t_coeff /= i*(2*(i-l) - 1);      t_power *= t;      delta = t_power*t_coeff;      sum += delta;      if(fabs(delta/sum) < GSL_DBL_EPSILON) break;    }    stat_il = gsl_sf_bessel_il_scaled_e(l, x, &ipos_term);    ineg_term =  sgn * num_fact.val/den * sum;    result->val = -sgn * 0.5*M_PI * (ex*ipos_term.val - ineg_term);    result->val *= ex;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_il;  }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_k0_scaled_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else {    result->val = M_PI/(2.0*x);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    CHECK_UNDERFLOW(result);    return GSL_SUCCESS;  }}int gsl_sf_bessel_k1_scaled_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x < (M_SQRTPI+1.0)/(M_SQRT2*GSL_SQRT_DBL_MAX)) {    OVERFLOW_ERROR(result);  }  else {    result->val = M_PI/(2.0*x) * (1.0 + 1.0/x);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    CHECK_UNDERFLOW(result);    return GSL_SUCCESS;  }}int gsl_sf_bessel_k2_scaled_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x < 2.0/GSL_ROOT3_DBL_MAX) {    OVERFLOW_ERROR(result);  }  else {    result->val = M_PI/(2.0*x) * (1.0 + 3.0/x * (1.0 + 1.0/x));    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    CHECK_UNDERFLOW(result);    return GSL_SUCCESS;  }}int gsl_sf_bessel_kl_scaled_e(int l, const double x, gsl_sf_result * result){  if(l < 0 || x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(l == 0) {    return gsl_sf_bessel_k0_scaled_e(x, result);  }  else if(l == 1) {    return gsl_sf_bessel_k1_scaled_e(x, result);  }  else if(l == 2) {    return gsl_sf_bessel_k2_scaled_e(x, result);  }  else if(x < 3.0) {    return bessel_kl_scaled_small_x(l, x, result);  }  else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1)) {    int status = gsl_sf_bessel_Knu_scaled_asympx_e(l + 0.5, x, result);    double pre = sqrt((0.5*M_PI)/x);    result->val *= pre;    result->err *= pre;    return status;  }  else if(GSL_MIN(0.29/(l*l+1.0), 0.5/(l*l+1.0+x*x)) < GSL_ROOT3_DBL_EPSILON) {    int status = gsl_sf_bessel_Knu_scaled_asymp_unif_e(l + 0.5, x, result);    double pre = sqrt((0.5*M_PI)/x);    result->val *= pre;    result->err *= pre;    return status;  }  else {    /* recurse upward */    gsl_sf_result r_bk;    gsl_sf_result r_bkm;    int stat_1 = gsl_sf_bessel_k1_scaled_e(x, &r_bk);    int stat_0 = gsl_sf_bessel_k0_scaled_e(x, &r_bkm);    double bkp;    double bk  = r_bk.val;    double bkm = r_bkm.val;    int j;    for(j=1; j<l; j++) {       bkp = (2*j+1)/x*bk + bkm;      bkm = bk;      bk  = bkp;    }    result->val  = bk;    result->err  = fabs(bk) * (fabs(r_bk.err/r_bk.val) + fabs(r_bkm.err/r_bkm.val));    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_1, stat_0);  }}int gsl_sf_bessel_kl_scaled_array(const int lmax, const double x, double * result_array){  if(lmax < 1 || x <= 0.0) {    GSL_ERROR("domain error", GSL_EDOM);  }  else {    int ell;    double kellp1, kell, kellm1;    gsl_sf_result r_kell;    gsl_sf_result r_kellm1;    gsl_sf_bessel_k1_scaled_e(x, &r_kell);    gsl_sf_bessel_k0_scaled_e(x, &r_kellm1);    kell   = r_kell.val;    kellm1 = r_kellm1.val;    result_array[0] = kellm1;    result_array[1] = kell;    for(ell = 1; ell < lmax; ell++) {      kellp1 = (2*ell+1)/x * kell + kellm1;      result_array[ell+1] = kellp1;      kellm1 = kell;      kell   = kellp1;    }    return GSL_SUCCESS;  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_k0_scaled(const double x){  EVAL_RESULT(gsl_sf_bessel_k0_scaled_e(x, &result));}double gsl_sf_bessel_k1_scaled(const double x){  EVAL_RESULT(gsl_sf_bessel_k1_scaled_e(x, &result));}double gsl_sf_bessel_k2_scaled(const double x){  EVAL_RESULT(gsl_sf_bessel_k2_scaled_e(x, &result));}double gsl_sf_bessel_kl_scaled(const int l, const double x){  EVAL_RESULT(gsl_sf_bessel_kl_scaled_e(l, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -