⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 legendre_qn.c

📁 多个常用的特殊函数的例子
💻 C
字号:
/* specfunc/legendre_Qn.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_bessel.h>#include <gsl/gsl_sf_elementary.h>#include <gsl/gsl_sf_exp.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_legendre.h>#include "error.h"/* Evaluate f_{ell+1}/f_ell * f_ell := Q^{b}_{a+ell}(x) * x > 1 */staticintlegendreQ_CF1_xgt1(int ell, double a, double b, double x, double * result){  const double RECUR_BIG = GSL_SQRT_DBL_MAX;  const int maxiter = 5000;  int n = 1;  double Anm2 = 1.0;  double Bnm2 = 0.0;  double Anm1 = 0.0;  double Bnm1 = 1.0;  double a1 = ell + 1.0 + a + b;  double b1 = (2.0*(ell+1.0+a) + 1.0) * x;  double An = b1*Anm1 + a1*Anm2;  double Bn = b1*Bnm1 + a1*Bnm2;  double an, bn;  double fn = An/Bn;  while(n < maxiter) {    double old_fn;    double del;    double lna;    n++;    Anm2 = Anm1;    Bnm2 = Bnm1;    Anm1 = An;    Bnm1 = Bn;    lna = ell + n + a;    an = b*b - lna*lna;    bn = (2.0*lna + 1.0) * x;    An = bn*Anm1 + an*Anm2;    Bn = bn*Bnm1 + an*Bnm2;    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {      An /= RECUR_BIG;      Bn /= RECUR_BIG;      Anm1 /= RECUR_BIG;      Bnm1 /= RECUR_BIG;      Anm2 /= RECUR_BIG;      Bnm2 /= RECUR_BIG;    }    old_fn = fn;    fn = An/Bn;    del = old_fn/fn;    if(fabs(del - 1.0) < 4.0*GSL_DBL_EPSILON) break;  }  *result = fn;  if(n == maxiter)    GSL_ERROR ("error", GSL_EMAXITER);  else    return GSL_SUCCESS; }/* Uniform asymptotic for Q_l(x). * Assumes x > -1.0 and x != 1.0. * Discards second order and higher terms. */staticintlegendre_Ql_asymp_unif(const double ell, const double x, gsl_sf_result * result){  if(x < 1.0) {    double u   = ell + 0.5;    double th  = acos(x);    gsl_sf_result Y0, Y1;    int stat_Y0, stat_Y1;    int stat_m;    double pre;    double B00;    double sum;    /* B00 = 1/8 (1 - th cot(th) / th^2     * pre = sqrt(th/sin(th))     */    if(th < GSL_ROOT4_DBL_EPSILON) {      B00 = (1.0 + th*th/15.0)/24.0;      pre = 1.0 + th*th/12.0;    }    else {      double sin_th = sqrt(1.0 - x*x);      double cot_th = x / sin_th;      B00 = 1.0/8.0 * (1.0 - th * cot_th) / (th*th);      pre = sqrt(th/sin_th);    }    stat_Y0 = gsl_sf_bessel_Y0_e(u*th, &Y0);    stat_Y1 = gsl_sf_bessel_Y1_e(u*th, &Y1);    sum = -0.5*M_PI * (Y0.val + th/u * Y1.val * B00);    stat_m = gsl_sf_multiply_e(pre, sum, result);    result->err += 0.5*M_PI * fabs(pre) * (Y0.err + fabs(th/u*B00)*Y1.err);    result->err += GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_3(stat_m, stat_Y0, stat_Y1);  }  else {    double u   = ell + 0.5;    double xi  = acosh(x);    gsl_sf_result K0_scaled, K1_scaled;    int stat_K0, stat_K1;    int stat_e;    double pre;    double B00;    double sum;    /* B00 = -1/8 (1 - xi coth(xi) / xi^2     * pre = sqrt(xi/sinh(xi))     */    if(xi < GSL_ROOT4_DBL_EPSILON) {      B00 = (1.0-xi*xi/15.0)/24.0;      pre = 1.0 - xi*xi/12.0;    }    else {      double sinh_xi = sqrt(x*x - 1.0);      double coth_xi = x / sinh_xi;      B00 = -1.0/8.0 * (1.0 - xi * coth_xi) / (xi*xi);      pre = sqrt(xi/sinh_xi);    }    stat_K0 = gsl_sf_bessel_K0_scaled_e(u*xi, &K0_scaled);    stat_K1 = gsl_sf_bessel_K1_scaled_e(u*xi, &K1_scaled);    sum = K0_scaled.val - xi/u * K1_scaled.val * B00;    stat_e = gsl_sf_exp_mult_e(-u*xi, pre * sum, result);    result->err  = GSL_DBL_EPSILON * fabs(result->val) * fabs(u*xi);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_3(stat_e, stat_K0, stat_K1);  }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_legendre_Q0_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= -1.0 || x == 1.0) {    DOMAIN_ERROR(result);  }  else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */    const double c3 = 1.0/3.0;    const double c5 = 1.0/5.0;    const double c7 = 1.0/7.0;    const double c9 = 1.0/9.0;    const double c11 = 1.0/11.0;    const double y = x * x;    const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11))));    result->val = x * series;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(x);    return GSL_SUCCESS;  }  else if(x < 1.0) {    result->val = 0.5 * log((1.0+x)/(1.0-x));    result->err  = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x < 10.0) {    result->val = 0.5 * log((x+1.0)/(x-1.0));    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x*GSL_DBL_MIN < 2.0) {    const double y = 1.0/(x*x);    const double c1 = 1.0/3.0;    const double c2 = 1.0/5.0;    const double c3 = 1.0/7.0;    const double c4 = 1.0/9.0;    const double c5 = 1.0/11.0;    const double c6 = 1.0/13.0;    const double c7 = 1.0/15.0;    result->val = (1.0/x) * (1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7)))))));    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    UNDERFLOW_ERROR(result);  }}intgsl_sf_legendre_Q1_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= -1.0 || x == 1.0) {    DOMAIN_ERROR(result);  }  else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */    const double c3 = 1.0/3.0;    const double c5 = 1.0/5.0;    const double c7 = 1.0/7.0;    const double c9 = 1.0/9.0;    const double c11 = 1.0/11.0;    const double y = x * x;    const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11))));    result->val = x * x * series - 1.0;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x < 1.0){    result->val = 0.5 * x * (log((1.0+x)/(1.0-x))) - 1.0;    result->err  = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x < 6.0) {    result->val = 0.5 * x * log((x+1.0)/(x-1.0)) - 1.0;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x*GSL_SQRT_DBL_MIN < 0.99/M_SQRT3) {    const double y = 1/(x*x);    const double c1 = 3.0/5.0;    const double c2 = 3.0/7.0;    const double c3 = 3.0/9.0;    const double c4 = 3.0/11.0;    const double c5 = 3.0/13.0;    const double c6 = 3.0/15.0;    const double c7 = 3.0/17.0;    const double c8 = 3.0/19.0;    const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*c8)))))));    result->val = sum / (3.0*x*x);    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    UNDERFLOW_ERROR(result);  }}intgsl_sf_legendre_Ql_e(const int l, const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= -1.0 || x == 1.0 || l < 0) {    DOMAIN_ERROR(result);  }  else if(l == 0) {    return gsl_sf_legendre_Q0_e(x, result);  }  else if(l == 1) {    return gsl_sf_legendre_Q1_e(x, result);  }  else if(l > 100000) {    return legendre_Ql_asymp_unif(l, x, result);  }  else if(x < 1.0){    /* Forward recurrence.     */    gsl_sf_result Q0, Q1;    int stat_Q0 = gsl_sf_legendre_Q0_e(x, &Q0);    int stat_Q1 = gsl_sf_legendre_Q1_e(x, &Q1);    double Qellm1 = Q0.val;    double Qell   = Q1.val;    double Qellp1;    int ell;    for(ell=1; ell<l; ell++) {      Qellp1 = (x*(2.0*ell + 1.0) * Qell - ell * Qellm1) / (ell + 1.0);      Qellm1 = Qell;      Qell   = Qellp1;    }    result->val = Qell;    result->err = GSL_DBL_EPSILON * l * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_Q0, stat_Q1);  }  else {    /* x > 1.0 */    double rat;    int stat_CF1  = legendreQ_CF1_xgt1(l, 0.0, 0.0, x, &rat);    int stat_Q;    double Qellp1 = rat * GSL_SQRT_DBL_MIN;    double Qell   = GSL_SQRT_DBL_MIN;    double Qellm1;    int ell;    for(ell=l; ell>0; ell--) {      Qellm1 = (x * (2.0*ell + 1.0) * Qell - (ell+1.0) * Qellp1) / ell;      Qellp1 = Qell;      Qell   = Qellm1;    }    if(fabs(Qell) > fabs(Qellp1)) {      gsl_sf_result Q0;      stat_Q = gsl_sf_legendre_Q0_e(x, &Q0);      result->val = GSL_SQRT_DBL_MIN * Q0.val / Qell;      result->err = l * GSL_DBL_EPSILON * fabs(result->val);    }    else {      gsl_sf_result Q1;      stat_Q = gsl_sf_legendre_Q1_e(x, &Q1);      result->val = GSL_SQRT_DBL_MIN * Q1.val / Qellp1;      result->err = l * GSL_DBL_EPSILON * fabs(result->val);    }    return GSL_ERROR_SELECT_2(stat_Q, stat_CF1);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_legendre_Q0(const double x){  EVAL_RESULT(gsl_sf_legendre_Q0_e(x, &result));}double gsl_sf_legendre_Q1(const double x){  EVAL_RESULT(gsl_sf_legendre_Q1_e(x, &result));}double gsl_sf_legendre_Ql(const int l, const double x){  EVAL_RESULT(gsl_sf_legendre_Ql_e(l, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -