📄 bessel_zero.c
字号:
/* specfunc/bessel_zero.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_airy.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_bessel.h>#include "error.h"#include "bessel_olver.h"/* For Chebyshev expansions of the roots as functions of nu, * see [G. Nemeth, Mathematical Approximation of Special Functions]. * This gives the fits for all nu and s <= 10. * I made the fits for other values of s myself [GJ]. *//* Chebyshev expansion: j_{nu,1} = c_k T_k*(nu/2), nu <= 2 */static const double coef_jnu1_a[] = { 3.801775243633476, 1.360704737511120, -0.030707710261106, 0.004526823746202, -0.000808682832134, 0.000159218792489, -0.000033225189761, 0.000007205599763, -0.000001606110397, 0.000000365439424, -0.000000084498039, 0.000000019793815, -0.000000004687054, 0.000000001120052, -0.000000000269767, 0.000000000065420, -0.000000000015961, 0.000000000003914, -0.000000000000965, 0.000000000000239, -0.000000000000059, 0.000000000000015, -0.000000000000004, 0.000000000000001};/* Chebyshev expansion: j_{nu,1} = nu c_k T_k*((2/nu)^(2/3)), nu >= 2 */static const double coef_jnu1_b[] = { 1.735063412537096, 0.784478100951978, 0.048881473180370, -0.000578279783021, -0.000038984957864, 0.000005758297879, -0.000000327583229, -0.000000003853878, 0.000000002284653, -0.000000000153079, -0.000000000000895, 0.000000000000283, 0.000000000000043, 0.000000000000010, -0.000000000000003};/* Chebyshev expansion: j_{nu,2} = c_k T_k*(nu/2), nu <= 2 */static const double coef_jnu2_a[] = { 6.992370244046161, 1.446379282056534, -0.023458616207293, 0.002172149448700, -0.000246262775620, 0.000030990180959, -0.000004154183047, 0.000000580766328, -0.000000083648175, 0.000000012317355, -0.000000001844887, 0.000000000280076, -0.000000000042986, 0.000000000006658, -0.000000000001039, 0.000000000000163, -0.000000000000026, 0.000000000000004, -0.000000000000001};/* Chebyshev expansion: j_{nu,2} = nu c_k T_k*((2/nu)^(2/3)), nu >= 2 */static const double coef_jnu2_b[] = { 2.465611864263400, 1.607952988471069, 0.138758034431497, -0.003687791182054, -0.000051276007868, 0.000045113570749, -0.000007579172152, 0.000000736469208, -0.000000011118527, -0.000000011919884, 0.000000002696788, -0.000000000314488, 0.000000000008124, 0.000000000005211, -0.000000000001292, 0.000000000000158, -0.000000000000004, -0.000000000000003, 0.000000000000001};/* Chebyshev expansion: j_{nu,3} = c_k T_k*(nu/3), nu <= 3 */static const double coef_jnu3_a[] = { 10.869647065239236, 2.177524286141710, -0.034822817125293, 0.003167249102413, -0.000353960349344, 0.000044039086085, -0.000005851380981, 0.000000812575483, -0.000000116463617, 0.000000017091246, -0.000000002554376, 0.000000000387335, -0.000000000059428, 0.000000000009207, -0.000000000001438, 0.000000000000226, -0.000000000000036, 0.000000000000006, -0.000000000000001};/* Chebyshev expansion: j_{nu,3} = nu c_k T_k*((3/nu)^(2/3)), nu >= 3 */static const double coef_jnu3_b[] = { 2.522816775173244, 1.673199424973720, 0.146431617506314, -0.004049001763912, -0.000039517767244, 0.000048781729288, -0.000008729705695, 0.000000928737310, -0.000000028388244, -0.000000012927432, 0.000000003441008, -0.000000000471695, 0.000000000025590, 0.000000000005502, -0.000000000001881, 0.000000000000295, -0.000000000000020, -0.000000000000003, 0.000000000000001};/* Chebyshev expansion: j_{nu,4} = c_k T_k*(nu/4), nu <= 4 */static const double coef_jnu4_a[] = { 14.750310252773009, 2.908010932941708, -0.046093293420315, 0.004147172321412, -0.000459092310473, 0.000056646951906, -0.000007472351546, 0.000001031210065, -0.000000147008137, 0.000000021475218, -0.000000003197208, 0.000000000483249, -0.000000000073946, 0.000000000011431, -0.000000000001782, 0.000000000000280, -0.000000000000044, 0.000000000000007, -0.000000000000001};/* Chebyshev expansion: j_{nu,4} = nu c_k T_k*((4/nu)^(2/3)), nu >= 4 */static const double coef_jnu4_b[] = { 2.551681323117914, 1.706177978336572, 0.150357658406131, -0.004234001378590, -0.000033854229898, 0.000050763551485, -0.000009337464057, 0.000001029717834, -0.000000037474196, -0.000000013450153, 0.000000003836180, -0.000000000557404, 0.000000000035748, 0.000000000005487, -0.000000000002187, 0.000000000000374, -0.000000000000031, -0.000000000000003, 0.000000000000001};/* Chebyshev expansion: j_{nu,5} = c_k T_k*(nu/5), nu <= 5 */static const double coef_jnu5_a[] = { 18.632261081028211, 3.638249012596966, -0.057329705998828, 0.005121709126820, -0.000563325259487, 0.000069100826174, -0.000009066603030, 0.000001245181383, -0.000000176737282, 0.000000025716695, -0.000000003815184, 0.000000000574839, -0.000000000087715, 0.000000000013526, -0.000000000002104, 0.000000000000330, -0.000000000000052, 0.000000000000008, -0.000000000000001};/* Chebyshev expansion: j_{nu,5} = nu c_k T_k*((5/nu)^(2/3)), nu >= 5 *//* FIXME: There is something wrong with this fit, in about the * 9th or 10th decimal place. */static const double coef_jnu5_b[] = { 2.569079487591442, 1.726073360882134, 0.152740776809531, -0.004346449660148, -0.000030512461856, 0.000052000821080, -0.000009713343981, 0.000001091997863, -0.000000043061707, -0.000000013779413, 0.000000004082870, -0.000000000611259, 0.000000000042242, 0.000000000005448, -0.000000000002377, 0.000000000000424, -0.000000000000038, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,6} = c_k T_k*(nu/6), nu <= 6 */static const double coef_jnu6_a[] = { 22.514836143374042, 4.368367257557198, -0.068550155285562, 0.006093776505822, -0.000667152784957, 0.000081486022398, -0.000010649011647, 0.000001457089679, -0.000000206105082, 0.000000029894724, -0.000000004422012, 0.000000000664471, -0.000000000101140, 0.000000000015561, -0.000000000002416, 0.000000000000378, -0.000000000000060, 0.000000000000009, -0.000000000000002};/* Chebyshev expansion: j_{nu,6} = nu c_k T_k*((6/nu)^(2/3)), nu >= 6 */static const double coef_jnu6_b[] = { 2.580710285494837, 1.739380728566154, 0.154340696401691, -0.004422028860168, -0.000028305272624, 0.000052845975269, -0.000009968794373, 0.000001134252926, -0.000000046841241, -0.000000014007555, 0.000000004251816, -0.000000000648213, 0.000000000046728, 0.000000000005414, -0.000000000002508, 0.000000000000459, -0.000000000000043, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,7} = c_k T_k*(nu/7), nu <= 7 */static const double coef_jnu7_a[] = { 26.397760539730869, 5.098418721711790, -0.079761896398948, 0.007064521280487, -0.000770766522482, 0.000093835449636, -0.000012225308542, 0.000001667939800, -0.000000235288157, 0.000000034040347, -0.000000005023142, 0.000000000753101, -0.000000000114389, 0.000000000017564, -0.000000000002722, 0.000000000000425, -0.000000000000067, 0.000000000000011, -0.000000000000002};/* Chebyshev expansion: j_{nu,7} = nu c_k T_k*((7/nu)^(2/3)), nu >= 7 */static const double coef_jnu7_b[] = { 2.589033335856773, 1.748907007612678, 0.155488900387653, -0.004476317805688, -0.000026737952924, 0.000053459680946, -0.000010153699240, 0.000001164804272, -0.000000049566917, -0.000000014175403, 0.000000004374840, -0.000000000675135, 0.000000000050004, 0.000000000005387, -0.000000000002603, 0.000000000000485, -0.000000000000047, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,8} = c_k T_k*(nu/8), nu <= 8 */static const double coef_jnu8_a[] = { 30.280900001606662, 5.828429205461221, -0.090968381181069, 0.008034479731033, -0.000874254899080, 0.000106164151611, -0.000013798098749, 0.000001878187386, -0.000000264366627, 0.000000038167685, -0.000000005621060, 0.000000000841165, -0.000000000127538, 0.000000000019550, -0.000000000003025, 0.000000000000472, -0.000000000000074, 0.000000000000012, -0.000000000000002};/* Chebyshev expansion: j_{nu,8} = nu c_k T_k*((8/nu)^(2/3)), nu >= 8 */static const double coef_jnu8_b[] = { 2.595283877150078, 1.756063044986928, 0.156352972371030, -0.004517201896761, -0.000025567187878, 0.000053925472558, -0.000010293734486, 0.000001187923085, -0.000000051625122, -0.000000014304212, 0.000000004468450, -0.000000000695620, 0.000000000052500, 0.000000000005367, -0.000000000002676, 0.000000000000505, -0.000000000000050, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,9} = c_k T_k*(nu/9), nu <= 9 */static const double coef_jnu9_a[] = { 34.164181213238386, 6.558412747925228, -0.102171455365016, 0.009003934361201, -0.000977663914535, 0.000118479876579, -0.000015368714220, 0.000002088064285, -0.000000293381154, 0.000000042283900, -0.000000006217033, 0.000000000928887, -0.000000000140627, 0.000000000021526, -0.000000000003326, 0.000000000000518, -0.000000000000081, 0.000000000000013, -0.000000000000002};/* Chebyshev expansion: j_{nu,9} = nu c_k T_k*((9/nu)^(2/3)), nu >= 9 */static const double coef_jnu9_b[] = { 2.600150240905079, 1.761635491694032, 0.157026743724010, -0.004549100368716, -0.000024659248617, 0.000054291035068, -0.000010403464334, 0.000001206027524, -0.000000053234089, -0.000000014406241, 0.000000004542078, -0.000000000711728, 0.000000000054464, 0.000000000005350, -0.000000000002733, 0.000000000000521, -0.000000000000052, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,10} = c_k T_k*(nu/10), nu <= 10 */static const double coef_jnu10_a[] = { 38.047560766184647, 7.288377637926008, -0.113372193277897, 0.009973047509098, -0.001081019701335, 0.000130786983847, -0.000016937898538, 0.000002297699179, -0.000000322354218, 0.000000046392941, -0.000000006811759, 0.000000001016395, -0.000000000153677, 0.000000000023486, -0.000000000003616, 0.000000000000561, -0.000000000000095, 0.000000000000027, -0.000000000000013, 0.000000000000005};/* Chebyshev expansion: j_{nu,10} = nu c_k T_k*((10/nu)^(2/3)), nu >= 10 */static const double coef_jnu10_b[] = { 2.604046346867949, 1.766097596481182, 0.157566834446511, -0.004574682244089, -0.000023934500688, 0.000054585558231, -0.000010491765415, 0.000001220589364, -0.000000054526331, -0.000000014489078, 0.000000004601510, -0.000000000724727, 0.000000000056049, 0.000000000005337, -0.000000000002779, 0.000000000000533, -0.000000000000054, -0.000000000000002, 0.000000000000002};/* Chebyshev expansion: j_{nu,11} = c_k T_k*(nu/22), nu <= 22 */static const double coef_jnu11_a[] = { 49.5054081076848637, 15.33692279367165101, -0.33677234163517130, 0.04623235772920729, -0.00781084960665093, 0.00147217395434708, -0.00029695043846867, 0.00006273356860235, -0.00001370575125628, 3.07171282012e-6, -7.0235041249e-7, 1.6320559339e-7, -3.843117306e-8, 9.15083800e-9, -2.19957642e-9, 5.3301703e-10, -1.3007541e-10, 3.193827e-11, -7.88605e-12, 1.95918e-12, -4.9020e-13, 1.2207e-13, -2.820e-14, 5.25e-15, -1.88e-15, 2.80e-15, -2.45e-15};/* Chebyshev expansion: j_{nu,12} = c_k T_k*(nu/24), nu <= 24 */static const double coef_jnu12_a[] = { 54.0787833216641519, 16.7336367772863598, -0.36718411124537953, 0.05035523375053820, -0.00849884978867533, 0.00160027692813434, -0.00032248114889921, 0.00006806354127199, -0.00001485665901339, 3.32668783672e-6, -7.5998952729e-7, 1.7644939709e-7, -4.151538210e-8, 9.87722772e-9, -2.37230133e-9, 5.7442875e-10, -1.4007767e-10, 3.437166e-11, -8.48215e-12, 2.10554e-12, -5.2623e-13, 1.3189e-13, -3.175e-14, 5.73e-15, 5.6e-16, -8.7e-16, -6.5e-16};/* Chebyshev expansion: j_{nu,13} = c_k T_k*(nu/26), nu <= 26 */static const double coef_jnu13_a[] = { 58.6521941921708890, 18.1303398137970284, -0.39759381380126650, 0.05447765240465494, -0.00918674227679980, 0.00172835361420579, -0.00034800528297612, 0.00007339183835188, -0.00001600713368099, 3.58154960392e-6, -8.1759873497e-7, 1.8968523220e-7, -4.459745253e-8, 1.060304419e-8, -2.54487624e-9, 6.1580214e-10, -1.5006751e-10, 3.679707e-11, -9.07159e-12, 2.24713e-12,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -