📄 math.c
字号:
}gsl_complexgsl_complex_cot (gsl_complex a){ /* z = cot(a) */ gsl_complex z = gsl_complex_tan (a); return gsl_complex_inverse (z);}/********************************************************************** * Inverse Complex Trigonometric Functions **********************************************************************/gsl_complexgsl_complex_arcsin (gsl_complex a){ /* z = arcsin(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { z = gsl_complex_arcsin_real (R); } else { double x = fabs (R), y = fabs (I); double r = hypot (x + 1, y), s = hypot (x - 1, y); double A = 0.5 * (r + s); double B = x / A; double y2 = y * y; double real, imag; const double A_crossover = 1.5, B_crossover = 0.6417; if (B <= B_crossover) { real = asin (B); } else { if (x <= 1) { double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x))); real = atan (x / sqrt (D)); } else { double Apx = A + x; double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1))); real = atan (x / (y * sqrt (D))); } } if (A <= A_crossover) { double Am1; if (x < 1) { Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x))); } else { Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1))); } imag = log1p (Am1 + sqrt (Am1 * (A + 1))); } else { imag = log (A + sqrt (A * A - 1)); } GSL_SET_COMPLEX (&z, (R >= 0) ? real : -real, (I >= 0) ? imag : -imag); } return z;}gsl_complexgsl_complex_arcsin_real (double a){ /* z = arcsin(a) */ gsl_complex z; if (fabs (a) <= 1.0) { GSL_SET_COMPLEX (&z, asin (a), 0.0); } else { if (a < 0.0) { GSL_SET_COMPLEX (&z, -M_PI_2, acosh (-a)); } else { GSL_SET_COMPLEX (&z, M_PI_2, -acosh (a)); } } return z;}gsl_complexgsl_complex_arccos (gsl_complex a){ /* z = arccos(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { z = gsl_complex_arccos_real (R); } else { double x = fabs (R), y = fabs (I); double r = hypot (x + 1, y), s = hypot (x - 1, y); double A = 0.5 * (r + s); double B = x / A; double y2 = y * y; double real, imag; const double A_crossover = 1.5, B_crossover = 0.6417; if (B <= B_crossover) { real = acos (B); } else { if (x <= 1) { double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x))); real = atan (sqrt (D) / x); } else { double Apx = A + x; double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1))); real = atan ((y * sqrt (D)) / x); } } if (A <= A_crossover) { double Am1; if (x < 1) { Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x))); } else { Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1))); } imag = log1p (Am1 + sqrt (Am1 * (A + 1))); } else { imag = log (A + sqrt (A * A - 1)); } GSL_SET_COMPLEX (&z, (R >= 0) ? real : M_PI - real, (I >= 0) ? -imag : imag); } return z;}gsl_complexgsl_complex_arccos_real (double a){ /* z = arccos(a) */ gsl_complex z; if (fabs (a) <= 1.0) { GSL_SET_COMPLEX (&z, acos (a), 0); } else { if (a < 0.0) { GSL_SET_COMPLEX (&z, M_PI, -acosh (-a)); } else { GSL_SET_COMPLEX (&z, 0, acosh (a)); } } return z;}gsl_complexgsl_complex_arctan (gsl_complex a){ /* z = arctan(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { GSL_SET_COMPLEX (&z, atan (R), 0); } else { /* FIXME: This is a naive implementation which does not fully take into account cancellation errors, overflow, underflow etc. It would benefit from the Hull et al treatment. */ double r = hypot (R, I); double imag; double u = 2 * I / (1 + r * r); /* FIXME: the following cross-over should be optimized but 0.1 seems to work ok */ if (fabs (u) < 0.1) { imag = 0.25 * (log1p (u) - log1p (-u)); } else { double A = hypot (R, I + 1); double B = hypot (R, I - 1); imag = 0.5 * log (A / B); } if (R == 0) { if (I > 1) { GSL_SET_COMPLEX (&z, M_PI_2, imag); } else if (I < -1) { GSL_SET_COMPLEX (&z, -M_PI_2, imag); } else { GSL_SET_COMPLEX (&z, 0, imag); }; } else { GSL_SET_COMPLEX (&z, 0.5 * atan2 (2 * R, ((1 + r) * (1 - r))), imag); } } return z;}gsl_complexgsl_complex_arcsec (gsl_complex a){ /* z = arcsec(a) */ gsl_complex z = gsl_complex_inverse (a); return gsl_complex_arccos (z);}gsl_complexgsl_complex_arcsec_real (double a){ /* z = arcsec(a) */ gsl_complex z; if (a <= -1.0 || a >= 1.0) { GSL_SET_COMPLEX (&z, acos (1 / a), 0.0); } else { if (a >= 0.0) { GSL_SET_COMPLEX (&z, 0, acosh (1 / a)); } else { GSL_SET_COMPLEX (&z, M_PI, -acosh (-1 / a)); } } return z;}gsl_complexgsl_complex_arccsc (gsl_complex a){ /* z = arccsc(a) */ gsl_complex z = gsl_complex_inverse (a); return gsl_complex_arcsin (z);}gsl_complexgsl_complex_arccsc_real (double a){ /* z = arccsc(a) */ gsl_complex z; if (a <= -1.0 || a >= 1.0) { GSL_SET_COMPLEX (&z, asin (1 / a), 0.0); } else { if (a >= 0.0) { GSL_SET_COMPLEX (&z, M_PI_2, -acosh (1 / a)); } else { GSL_SET_COMPLEX (&z, -M_PI_2, -acosh (-1 / a)); } } return z;}gsl_complexgsl_complex_arccot (gsl_complex a){ /* z = arccot(a) */ gsl_complex z; if (GSL_REAL (a) == 0.0 && GSL_IMAG (a) == 0.0) { GSL_SET_COMPLEX (&z, M_PI_2, 0); } else { z = gsl_complex_inverse (a); z = gsl_complex_arctan (z); } return z;}/********************************************************************** * Complex Hyperbolic Functions **********************************************************************/gsl_complexgsl_complex_sinh (gsl_complex a){ /* z = sinh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; GSL_SET_COMPLEX (&z, sinh (R) * cos (I), cosh (R) * sin (I)); return z;}gsl_complexgsl_complex_cosh (gsl_complex a){ /* z = cosh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; GSL_SET_COMPLEX (&z, cosh (R) * cos (I), sinh (R) * sin (I)); return z;}gsl_complexgsl_complex_tanh (gsl_complex a){ /* z = tanh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (fabs(R) < 1.0) { double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0); GSL_SET_COMPLEX (&z, sinh (R) * cosh (R) / D, 0.5 * sin (2 * I) / D); } else { double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0); double F = 1 + pow (cos (I) / sinh (R), 2.0); GSL_SET_COMPLEX (&z, 1.0 / (tanh (R) * F), 0.5 * sin (2 * I) / D); } return z;}gsl_complexgsl_complex_sech (gsl_complex a){ /* z = sech(a) */ gsl_complex z = gsl_complex_cosh (a); return gsl_complex_inverse (z);}gsl_complexgsl_complex_csch (gsl_complex a){ /* z = csch(a) */ gsl_complex z = gsl_complex_sinh (a); return gsl_complex_inverse (z);}gsl_complexgsl_complex_coth (gsl_complex a){ /* z = coth(a) */ gsl_complex z = gsl_complex_tanh (a); return gsl_complex_inverse (z);}/********************************************************************** * Inverse Complex Hyperbolic Functions **********************************************************************/gsl_complexgsl_complex_arcsinh (gsl_complex a){ /* z = arcsinh(a) */ gsl_complex z = gsl_complex_mul_imag(a, 1.0); z = gsl_complex_arcsin (z); z = gsl_complex_mul_imag (z, -1.0); return z;}gsl_complexgsl_complex_arccosh (gsl_complex a){ /* z = arccosh(a) */ gsl_complex z = gsl_complex_arccos (a); z = gsl_complex_mul_imag (z, GSL_IMAG(z) > 0 ? -1.0 : 1.0); return z;}gsl_complexgsl_complex_arccosh_real (double a){ /* z = arccosh(a) */ gsl_complex z; if (a >= 1) { GSL_SET_COMPLEX (&z, acosh (a), 0); } else { if (a >= -1.0) { GSL_SET_COMPLEX (&z, 0, acos (a)); } else { GSL_SET_COMPLEX (&z, acosh (-a), M_PI); } } return z;}gsl_complexgsl_complex_arctanh (gsl_complex a){ /* z = arctanh(a) */ if (GSL_IMAG (a) == 0.0) { return gsl_complex_arctanh_real (GSL_REAL (a)); } else { gsl_complex z = gsl_complex_mul_imag(a, 1.0); z = gsl_complex_arctan (z); z = gsl_complex_mul_imag (z, -1.0); return z; }}gsl_complexgsl_complex_arctanh_real (double a){ /* z = arctanh(a) */ gsl_complex z; if (a > -1.0 && a < 1.0) { GSL_SET_COMPLEX (&z, atanh (a), 0); } else { GSL_SET_COMPLEX (&z, atanh (1 / a), (a < 0) ? M_PI_2 : -M_PI_2); } return z;}gsl_complexgsl_complex_arcsech (gsl_complex a){ /* z = arcsech(a); */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arccosh (t);}gsl_complexgsl_complex_arccsch (gsl_complex a){ /* z = arccsch(a) */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arcsinh (t);}gsl_complexgsl_complex_arccoth (gsl_complex a){ /* z = arccoth(a) */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arctanh (t);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -