📄 gsl_complex_math.h
字号:
/* complex/gsl_complex_math.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Jorma Olavi T鋒tinen, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#ifndef __GSL_COMPLEX_MATH_H__#define __GSL_COMPLEX_MATH_H__#include <gsl/gsl_complex.h>#undef __BEGIN_DECLS#undef __END_DECLS#ifdef __cplusplus#define __BEGIN_DECLS extern "C" {#define __END_DECLS }#else#define __BEGIN_DECLS /* empty */#define __END_DECLS /* empty */#endif__BEGIN_DECLS/* Complex numbers */gsl_complex gsl_complex_rect (double x, double y); /* r= real+i*imag */gsl_complex gsl_complex_polar (double r, double theta); /* r= r e^(i theta) */#ifdef HAVE_INLINEextern inline gsl_complexgsl_complex_rect (double x, double y){ /* return z = x + i y */ gsl_complex z; GSL_SET_COMPLEX (&z, x, y); return z;}#endif#define GSL_COMPLEX_ONE (gsl_complex_rect(1.0,0.0))#define GSL_COMPLEX_ZERO (gsl_complex_rect(0.0,0.0))#define GSL_COMPLEX_NEGONE (gsl_complex_rect(-1.0,0.0))/* Properties of complex numbers */double gsl_complex_arg (gsl_complex z); /* return arg(z), -pi< arg(z) <=+pi */double gsl_complex_abs (gsl_complex z); /* return |z| */double gsl_complex_abs2 (gsl_complex z); /* return |z|^2 */double gsl_complex_logabs (gsl_complex z); /* return log|z| *//* Complex arithmetic operators */gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b); /* r=a+b */gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b); /* r=a-b */gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b); /* r=a*b */gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b); /* r=a/b */ gsl_complex gsl_complex_add_real (gsl_complex a, double x); /* r=a+x */gsl_complex gsl_complex_sub_real (gsl_complex a, double x); /* r=a-x */gsl_complex gsl_complex_mul_real (gsl_complex a, double x); /* r=a*x */gsl_complex gsl_complex_div_real (gsl_complex a, double x); /* r=a/x */gsl_complex gsl_complex_add_imag (gsl_complex a, double y); /* r=a+iy */gsl_complex gsl_complex_sub_imag (gsl_complex a, double y); /* r=a-iy */gsl_complex gsl_complex_mul_imag (gsl_complex a, double y); /* r=a*iy */gsl_complex gsl_complex_div_imag (gsl_complex a, double y); /* r=a/iy */gsl_complex gsl_complex_conjugate (gsl_complex z); /* r=conj(z) */gsl_complex gsl_complex_inverse (gsl_complex a); /* r=1/a */gsl_complex gsl_complex_negative (gsl_complex a); /* r=-a *//* Elementary Complex Functions */gsl_complex gsl_complex_sqrt (gsl_complex z); /* r=sqrt(z) */gsl_complex gsl_complex_sqrt_real (double x); /* r=sqrt(x) (x<0 ok) */gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b); /* r=a^b */gsl_complex gsl_complex_pow_real (gsl_complex a, double b); /* r=a^b */gsl_complex gsl_complex_exp (gsl_complex a); /* r=exp(a) */gsl_complex gsl_complex_log (gsl_complex a); /* r=log(a) (base e) */gsl_complex gsl_complex_log10 (gsl_complex a); /* r=log10(a) (base 10) */gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b); /* r=log_b(a) (base=b) *//* Complex Trigonometric Functions */gsl_complex gsl_complex_sin (gsl_complex a); /* r=sin(a) */gsl_complex gsl_complex_cos (gsl_complex a); /* r=cos(a) */gsl_complex gsl_complex_sec (gsl_complex a); /* r=sec(a) */gsl_complex gsl_complex_csc (gsl_complex a); /* r=csc(a) */gsl_complex gsl_complex_tan (gsl_complex a); /* r=tan(a) */gsl_complex gsl_complex_cot (gsl_complex a); /* r=cot(a) *//* Inverse Complex Trigonometric Functions */gsl_complex gsl_complex_arcsin (gsl_complex a); /* r=arcsin(a) */gsl_complex gsl_complex_arcsin_real (double a); /* r=arcsin(a) */gsl_complex gsl_complex_arccos (gsl_complex a); /* r=arccos(a) */gsl_complex gsl_complex_arccos_real (double a); /* r=arccos(a) */gsl_complex gsl_complex_arcsec (gsl_complex a); /* r=arcsec(a) */gsl_complex gsl_complex_arcsec_real (double a); /* r=arcsec(a) */gsl_complex gsl_complex_arccsc (gsl_complex a); /* r=arccsc(a) */gsl_complex gsl_complex_arccsc_real (double a); /* r=arccsc(a) */gsl_complex gsl_complex_arctan (gsl_complex a); /* r=arctan(a) */gsl_complex gsl_complex_arccot (gsl_complex a); /* r=arccot(a) *//* Complex Hyperbolic Functions */gsl_complex gsl_complex_sinh (gsl_complex a); /* r=sinh(a) */gsl_complex gsl_complex_cosh (gsl_complex a); /* r=coshh(a) */gsl_complex gsl_complex_sech (gsl_complex a); /* r=sech(a) */gsl_complex gsl_complex_csch (gsl_complex a); /* r=csch(a) */gsl_complex gsl_complex_tanh (gsl_complex a); /* r=tanh(a) */gsl_complex gsl_complex_coth (gsl_complex a); /* r=coth(a) *//* Inverse Complex Hyperbolic Functions */gsl_complex gsl_complex_arcsinh (gsl_complex a); /* r=arcsinh(a) */gsl_complex gsl_complex_arccosh (gsl_complex a); /* r=arccosh(a) */gsl_complex gsl_complex_arccosh_real (double a); /* r=arccosh(a) */gsl_complex gsl_complex_arcsech (gsl_complex a); /* r=arcsech(a) */gsl_complex gsl_complex_arccsch (gsl_complex a); /* r=arccsch(a) */gsl_complex gsl_complex_arctanh (gsl_complex a); /* r=arctanh(a) */gsl_complex gsl_complex_arctanh_real (double a); /* r=arctanh(a) */gsl_complex gsl_complex_arccoth (gsl_complex a); /* r=arccoth(a) */__END_DECLS#endif /* __GSL_COMPLEX_MATH_H__ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -