📄 ake2.cpp
字号:
/*
Scott's AKE Client/Server testbed
See http://www.compapp.dcu.ie/research/CA_Working_Papers/wp02.html#0202
Compile as
cl /O2 /GX /DBIGS=18 ake2.cpp zzn2.cpp ecn2.cpp big.cpp monty.cpp elliptic.cpp miracl.lib
using COMBA build
Requires file k2.ecs which contains details of non-supersingular
elliptic curve, with order divisible by q=2^159+2^17+1, and security
multiplier k=2. The prime p is 512 bits
NOTE: Key exchange bandwidth could be reduced by halve using ideas from
"Doing more with Fewer Bits", Brouwer, Pellikaan & Verheul, Asiacrypt
'99
*/
#include <iostream>
#include <fstream>
#include <elliptic.h>
#include <monty.h>
#include <ctime>
#include "ecn2.h"
#include "zzn2.h"
using namespace std;
Miracl precision(18,0);
// Using SHA-512 as basic hash algorithm
#define HASH_LEN 64
//
// Define one or the other of these
//
// Which is faster depends on the I/M ratio - See imratio.c
// Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE
//
// #define AFFINE
#define PROJECTIVE
//
// Tate Pairing Code
//
// Extract ECn point in internal ZZn format
//
void extract(ECn& A,ZZn& x,ZZn& y)
{
x=(A.get_point())->X;
y=(A.get_point())->Y;
}
void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z)
{
big t;
x=(A.get_point())->X;
y=(A.get_point())->Y;
t=(A.get_point())->Z;
if (A.get_status()!=MR_EPOINT_GENERAL) z=1;
else z=t;
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn2 line(ECn& A,ECn& C,ZZn& slope,ZZn& Qx,ZZn2& Qy)
{
ZZn2 w=Qy;
ZZn x,y,z,t,m=Qx;
#ifdef AFFINE
extract(A,x,y);
m-=x; m*=slope;
w-=y; w-=m;
#endif
#ifdef PROJECTIVE
extract(A,x,y,z);
x*=z; t=z; z*=z; z*=t;
m*=z; m-=x;
w*=z; w-=y;
extract(C,x,y,z);
w*=z; m*=slope; w-=m;
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Bump up num
//
void g(ECn& A,ECn& B,ZZn& Qx,ZZn2& Qy,ZZn2& num)
{
ZZn lam;
ZZn2 u;
ECn P=A;
big ptr;
// Evaluate line from A - lam is line slope
ptr=A.add(B);
if (ptr==NULL) { num.clear(); return; }
lam=ptr;
if (A.iszero()) return;
u=line(P,A,lam,Qx,Qy);
num*=u;
}
//
// Tate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order q.
// Note that P is a point on the curve over Fp, Q(x,y) a point on the
// extension field Fp^2
//
BOOL fast_tate_pairing(ECn& P,ZZn& Qx,ZZn2& Qy,Big& q,ZZn2& res)
{
int i,j;
Big p;
ECn A;
res=1;
// Note that q is fixed - q.P=2^17*(2^142.P + P) + P
A=P; // reset A
for (i=0;i<142;i++)
{
res*=res;
g(A,A,Qx,Qy,res);
}
g(A,P,Qx,Qy,res);
for (i=0;i<17;i++)
{
res*=res;
g(A,A,Qx,Qy,res);
}
g(A,P,Qx,Qy,res);
if (!A.iszero() || res.iszero()) return FALSE;
p=get_modulus();
res=pow(res,(p+1)/q);
res=conj(res)/res; // raise to power of (p^2-1)/q
if (res.isunity()) return FALSE;
return TRUE;
}
//
// co-gap ecap(.) function
//
BOOL ecap(ECn& P,ECn2& Q,Big& order,ZZn2& res)
{
BOOL Ok;
ZZn2 Qx,Qy;
ZZn Qxx;
Big t;
Q.get(Qx,Qy);
Qx.get(t);
Qxx=t;
Ok=fast_tate_pairing(P,Qxx,Qy,order,res);
return Ok;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha512 sh;
shs512_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs512_process(&sh,string[i]);
}
shs512_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn2 x)
{ // Hash an Fp2 to a big number
sha sh;
Big a,b,h,p;
char s[20];
int i,j,m;
shs_init(&sh);
x.get(a,b);
while (a>0)
{
m=a%256;
shs_process(&sh,m);
a/=256;
}
while (b>0)
{
m=b%256;
shs_process(&sh,m);
b/=256;
}
shs_hash(&sh,s);
h=from_binary(20,s);
return h;
}
// Hash and map a Server Identity to a curve point E_(Fp2)
ECn2 hash_and_map2(char *ID)
{
ECn T;
ECn2 S;
ZZn2 X,Y;
Big p,x,a=H1(ID);
p=get_modulus();
while (T.set(x)) a+=1; // Make sure its not on E(F_p)
X.set(a); // Map & Hash "Identity" to curve point
S.set(X); // This will never fail
return S;
}
// Hash and map a Client Identity to a curve point E_(Fp)
ECn hash_and_map(char *ID,Big cof)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0)) x0+=1;
Q*=cof;
return Q;
}
/* Note that if #E(Fp) = p+1-t
then #E(Fp2) = (p+1-t)(p+1+t) (a multiple of #E(Fp))
(Weil's Theorem)
*/
int main()
{
ifstream common("k2.ecs"); // elliptic curve parameters
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn2 B2,Server,sS;
ZZn2 X,Y,res,sp,ap,bp;
Big t,r,a,b,s,ss,p,q,x,y,B,cf,cf2;
int i,bits,A;
long seed;
common >> bits;
mip->IOBASE=16;
common >> p;
common >> A;
common >> B >> r;
t=p+1-r;
q=pow((Big)2,159)+pow((Big)2,17)+1;
cf= (p+1-t)/q; // q divides p+1 (for k=2 condition)
cf2=(p+1+t)/q; // and therefore also divides t (as it divides r)
// this co-factor is in fact not needed....
time(&seed);
irand(seed);
#ifdef AFFINE
ecurve(A,B,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve(A,B,p,MR_PROJECTIVE);
#endif
mip->IOBASE=16;
// hash Identities to curve point
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
Server=hash_and_map2("Server");
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map("Alice",cf);
Bob= hash_and_map("Robert",cf);
// Alice, Bob are points of order q
// Server does not need to be (its order is a multiple of q)
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=ss*Server;
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
if (!ecap(sA,Server,q,res)) cout << "Trouble" << endl;
ap=pow(res,a);
if (!ecap(Alice,sS,q,res)) cout << "Trouble" << endl;
sp=pow(res,s);
cout << "Alice Key= " << H2(pow(sp,a)) << endl;
cout << "Server Key= " << H2(pow(ap,s)) << endl;
cout << "Bob and Server Key exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!ecap(sB,Server,q,res)) cout << "Trouble" << endl;
bp=pow(res,b);
if (!ecap(Bob,sS,q,res)) cout << "Trouble" << endl;
sp=pow(res,s);
cout << "Bob's Key= " << H2(pow(sp,b)) << endl;
cout << "Server Key= " << H2(pow(bp,s)) << endl;
cout << "Alice and Bob's attempted Key exchange" << endl;
Bob.get(x,y);
X.set(x); Y.set(y);
B2.set(X,Y);
ecap(Alice,B2,q,res);
cout << "But Tate Pairing evaluates as.... :( " << res << endl;
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -