⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aesopt.h

📁 提供了很多种加密算法和CA认证及相关服务如CMP、OCSP等的开发
💻 H
📖 第 1 页 / 共 2 页
字号:
/*  11. VARIABLE BLOCK SIZE SPEED

    This section is only relevant if you wish to use the variable block
    length feature of the code.  Include this section if you place more
    emphasis on speed rather than code size.
*/
#if 1
#define FAST_VARIABLE
#endif

/*  12. INTERNAL TABLE CONFIGURATION

    This cipher proceeds by repeating in a number of cycles known as 'rounds'
    which are implemented by a round function which can optionally be speeded
    up using tables.  The basic tables are each 256 32-bit words, with either
    one or four tables being required for each round function depending on
    how much speed is required. The encryption and decryption round functions
    are different and the last encryption and decrytpion round functions are
    different again making four different round functions in all.

    This means that:
      1. Normal encryption and decryption rounds can each use either 0, 1
         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
      2. The last encryption and decryption rounds can also use either 0, 1
         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.

    Include or exclude the appropriate definitions below to set the number
    of tables used by this implementation.
*/

#if 1   /* set tables for the normal encryption round */
#define ENC_ROUND   FOUR_TABLES
#elif 0
#define ENC_ROUND   ONE_TABLE
#else
#define ENC_ROUND   NO_TABLES
#endif

#if 1       /* set tables for the last encryption round */
#define LAST_ENC_ROUND  FOUR_TABLES
#elif 0
#define LAST_ENC_ROUND  ONE_TABLE
#else
#define LAST_ENC_ROUND  NO_TABLES
#endif

#if 1   /* set tables for the normal decryption round */
#define DEC_ROUND   FOUR_TABLES
#elif 0
#define DEC_ROUND   ONE_TABLE
#else
#define DEC_ROUND   NO_TABLES
#endif

#if 1       /* set tables for the last decryption round */
#define LAST_DEC_ROUND  FOUR_TABLES
#elif 0
#define LAST_DEC_ROUND  ONE_TABLE
#else
#define LAST_DEC_ROUND  NO_TABLES
#endif

/*  The decryption key schedule can be speeded up with tables in the same
    way that the round functions can.  Include or exclude the following
    defines to set this requirement.
*/
#if 1
#define KEY_SCHED   FOUR_TABLES
#elif 0
#define KEY_SCHED   ONE_TABLE
#else
#define KEY_SCHED   NO_TABLES
#endif

/* END OF CONFIGURATION OPTIONS */

#define NO_TABLES   0   /* DO NOT CHANGE */
#define ONE_TABLE   1   /* DO NOT CHANGE */
#define FOUR_TABLES 4   /* DO NOT CHANGE */
#define NONE        0   /* DO NOT CHANGE */
#define PARTIAL     1   /* DO NOT CHANGE */
#define FULL        2   /* DO NOT CHANGE */

#if defined(BLOCK_SIZE) && ((BLOCK_SIZE & 3) || BLOCK_SIZE < 16 || BLOCK_SIZE > 32)
#error An illegal block size has been specified.
#endif

#if !defined(BLOCK_SIZE)
#define RC_LENGTH    29
#else
#define RC_LENGTH   5 * BLOCK_SIZE / 4 - (BLOCK_SIZE == 16 ? 10 : 11)
#endif

/* Disable at least some poor combinations of options */

#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
#undef  LAST_ENC_ROUND
#define LAST_ENC_ROUND  NO_TABLES
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
#undef  LAST_ENC_ROUND
#define LAST_ENC_ROUND  ONE_TABLE
#endif

#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
#undef  ENC_UNROLL
#define ENC_UNROLL  NONE
#endif

#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
#undef  LAST_DEC_ROUND
#define LAST_DEC_ROUND  NO_TABLES
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
#undef  LAST_DEC_ROUND
#define LAST_DEC_ROUND  ONE_TABLE
#endif

#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
#undef  DEC_UNROLL
#define DEC_UNROLL  NONE
#endif

#if defined( INC_ALL ) || defined( INC_CHILD )
  #include "aes.h"
#else
  #include "crypt/aes.h"
#endif /* Compiler-specific includes */

 /*
   upr(x,n):  rotates bytes within words by n positions, moving bytes to
              higher index positions with wrap around into low positions
   ups(x,n):  moves bytes by n positions to higher index positions in
              words but without wrap around
   bval(x,n): extracts a byte from a word
 */

#if (INTERNAL_BYTE_ORDER == AES_LITTLE_ENDIAN)
#if defined(_MSC_VER)
#define upr(x,n)        _lrotl((x), 8 * (n))
#else
#define upr(x,n)        (((x) << (8 * (n))) | ((x) >> (32 - 8 * (n))))
#endif
#define ups(x,n)        ((x) << (8 * (n)))
#define bval(x,n)       ((uint8_t)((x) >> (8 * (n))))
#define bytes2word(b0, b1, b2, b3)  \
        (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | (b0))
#endif

#if (INTERNAL_BYTE_ORDER == AES_BIG_ENDIAN)
#define upr(x,n)        (((x) >> (8 * (n))) | ((x) << (32 - 8 * (n))))
#define ups(x,n)        ((x) >> (8 * (n))))
#define bval(x,n)       ((uint8_t)((x) >> (24 - 8 * (n))))
#define bytes2word(b0, b1, b2, b3)  \
        (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | ((uint32_t)(b2) << 8) | (b3))
#endif

#if defined(SAFE_IO)

#define word_in(x)      bytes2word((x)[0], (x)[1], (x)[2], (x)[3])
#define word_out(x,v)   { (x)[0] = bval(v,0); (x)[1] = bval(v,1);   \
                          (x)[2] = bval(v,2); (x)[3] = bval(v,3);   }

#elif (INTERNAL_BYTE_ORDER == PLATFORM_BYTE_ORDER)

#define word_in(x)      *(uint32_t*)(x)
#define word_out(x,v)   *(uint32_t*)(x) = (v)

#else

#if !defined(bswap_32)
#if !defined(_MSC_VER)
#define _lrotl(x,n)     (((x) <<  n) | ((x) >> (32 - n)))
#endif
#define bswap_32(x)     ((_lrotl((x),8) & 0x00ff00ff) | (_lrotl((x),24) & 0xff00ff00))
#endif

#define word_in(x)      bswap_32(*(uint32_t*)(x))
#define word_out(x,v)   *(uint32_t*)(x) = bswap_32(v)

#endif

/* the finite field modular polynomial and elements */

#define ff_poly 0x011b
#define ff_hi   0x80

/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */

#define m1  0x80808080
#define m2  0x7f7f7f7f
#define m3  0x0000001b
#define FFmulX(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * m3))

/* The following defines provide alternative definitions of FFmulX that might
   give improved performance if a fast 32-bit multiply is not available. Note
   that a temporary variable u needs to be defined where FFmulX is used.

#define FFmulX(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
#define m4  0x1b1b1b1b
#define FFmulX(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
*/

/* Work out which tables are needed for the different options   */

#ifdef  AES_ASM
#ifdef  ENC_ROUND
#undef  ENC_ROUND
#endif
#define ENC_ROUND   FOUR_TABLES
#ifdef  LAST_ENC_ROUND
#undef  LAST_ENC_ROUND
#endif
#define LAST_ENC_ROUND  FOUR_TABLES
#ifdef  DEC_ROUND
#undef  DEC_ROUND
#endif
#define DEC_ROUND   FOUR_TABLES
#ifdef  LAST_DEC_ROUND
#undef  LAST_DEC_ROUND
#endif
#define LAST_DEC_ROUND  FOUR_TABLES
#ifdef  KEY_SCHED
#undef  KEY_SCHED
#define KEY_SCHED   FOUR_TABLES
#endif
#endif

#if defined(ENCRYPTION) || defined(AES_ASM)
#if ENC_ROUND == ONE_TABLE
#define FT1_SET
#elif ENC_ROUND == FOUR_TABLES
#define FT4_SET
#else
#define SBX_SET
#endif
#if LAST_ENC_ROUND == ONE_TABLE
#define FL1_SET
#elif LAST_ENC_ROUND == FOUR_TABLES
#define FL4_SET
#elif !defined(SBX_SET)
#define SBX_SET
#endif
#endif

#if defined(DECRYPTION) || defined(AES_ASM)
#if DEC_ROUND == ONE_TABLE
#define IT1_SET
#elif DEC_ROUND == FOUR_TABLES
#define IT4_SET
#else
#define ISB_SET
#endif
#if LAST_DEC_ROUND == ONE_TABLE
#define IL1_SET
#elif LAST_DEC_ROUND == FOUR_TABLES
#define IL4_SET
#elif !defined(ISB_SET)
#define ISB_SET
#endif
#endif

#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
#if KEY_SCHED == ONE_TABLE
#define LS1_SET
#define IM1_SET
#elif KEY_SCHED == FOUR_TABLES
#define LS4_SET
#define IM4_SET
#elif !defined(SBX_SET)
#define SBX_SET
#endif
#endif

#ifdef  FIXED_TABLES
#define prefx   extern const
#else
#define prefx   extern
extern uint8_t  tab_init;
void gen_tabs(void);
#endif

prefx uint32_t  rcon_tab[29];

#ifdef  SBX_SET
prefx uint8_t s_box[256];
#endif

#ifdef  ISB_SET
prefx uint8_t inv_s_box[256];
#endif

#ifdef  FT1_SET
prefx uint32_t ft_tab[256];
#endif

#ifdef  FT4_SET
prefx uint32_t ft_tab[4][256];
#endif

#ifdef  FL1_SET
prefx uint32_t fl_tab[256];
#endif

#ifdef  FL4_SET
prefx uint32_t fl_tab[4][256];
#endif

#ifdef  IT1_SET
prefx uint32_t it_tab[256];
#endif

#ifdef  IT4_SET
prefx uint32_t it_tab[4][256];
#endif

#ifdef  IL1_SET
prefx uint32_t il_tab[256];
#endif

#ifdef  IL4_SET
prefx uint32_t il_tab[4][256];
#endif

#ifdef  LS1_SET
#ifdef  FL1_SET
#undef  LS1_SET
#else
prefx uint32_t ls_tab[256];
#endif
#endif

#ifdef  LS4_SET
#ifdef  FL4_SET
#undef  LS4_SET
#else
prefx uint32_t ls_tab[4][256];
#endif
#endif

#ifdef  IM1_SET
prefx uint32_t im_tab[256];
#endif

#ifdef  IM4_SET
prefx uint32_t im_tab[4][256];
#endif

/* Set the number of columns in nc.  Note that it is important  */
/* that nc is a constant which is known at compile time if the  */
/* highest speed version of the code is needed                  */

#if defined(BLOCK_SIZE)
#define nc  (BLOCK_SIZE >> 2)
#else
#define nc  (cx->n_blk >> 2)
#endif

/* generic definitions of Rijndael macros that use of tables    */

#define no_table(x,box,vf,rf,c) bytes2word( \
    box[bval(vf(x,0,c),rf(0,c))], \
    box[bval(vf(x,1,c),rf(1,c))], \
    box[bval(vf(x,2,c),rf(2,c))], \
    box[bval(vf(x,3,c),rf(3,c))])

#define one_table(x,op,tab,vf,rf,c) \
 (     tab[bval(vf(x,0,c),rf(0,c))] \
  ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
  ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
  ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))

#define four_tables(x,tab,vf,rf,c) \
 (  tab[0][bval(vf(x,0,c),rf(0,c))] \
  ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
  ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
  ^ tab[3][bval(vf(x,3,c),rf(3,c))])

#define vf1(x,r,c)  (x)
#define rf1(r,c)    (r)
#define rf2(r,c)    ((r-c)&3)

/* perform forward and inverse column mix operation on four bytes in long word x in */
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros.  */

#define dec_fmvars
#if defined(FM4_SET)    /* not currently used */
#define fwd_mcol(x)     four_tables(x,fm_tab,vf1,rf1,0)
#elif defined(FM1_SET)  /* not currently used */
#define fwd_mcol(x)     one_table(x,upr,fm_tab,vf1,rf1,0)
#else
#undef  dec_fmvars
#define dec_fmvars      uint32_t f1, f2;
#define fwd_mcol(x)     (f1 = (x), f2 = FFmulX(f1), f2 ^ upr(f1 ^ f2, 3) ^ upr(f1, 2) ^ upr(f1, 1))
#endif

#define dec_imvars
#if defined(IM4_SET)
#define inv_mcol(x)     four_tables(x,im_tab,vf1,rf1,0)
#elif defined(IM1_SET)
#define inv_mcol(x)     one_table(x,upr,im_tab,vf1,rf1,0)
#else
#undef  dec_imvars
#define dec_imvars      uint32_t    f2, f4, f8, f9;
#define inv_mcol(x) \
    (f9 = (x), f2 = FFmulX(f9), f4 = FFmulX(f2), f8 = FFmulX(f4), f9 ^= f8, \
    f2 ^= f4 ^ f8 ^ upr(f2 ^ f9,3) ^ upr(f4 ^ f9,2) ^ upr(f9,1))
#endif

#if defined(FL4_SET)
#define ls_box(x,c)     four_tables(x,fl_tab,vf1,rf2,c)
#elif   defined(LS4_SET)
#define ls_box(x,c)     four_tables(x,ls_tab,vf1,rf2,c)
#elif defined(FL1_SET)
#define ls_box(x,c)     one_table(x,upr,fl_tab,vf1,rf2,c)
#elif defined(LS1_SET)
#define ls_box(x,c)     one_table(x,upr,ls_tab,vf1,rf2,c)
#else
#define ls_box(x,c)     no_table(x,s_box,vf1,rf2,c)
#endif

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -