⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aeskey.c

📁 提供了很多种加密算法和CA认证及相关服务如CMP、OCSP等的开发
💻 C
字号:

/*
 -------------------------------------------------------------------------
 Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
 All rights reserved.

 TERMS

 Redistribution and use in source and binary forms, with or without 
 modification, are permitted subject to the following conditions:

  1. Redistributions of source code must retain the above copyright 
     notice, this list of conditions and the following disclaimer. 

  2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the 
     documentation and/or other materials provided with the distribution. 

  3. The copyright holder's name must not be used to endorse or promote 
     any products derived from this software without his specific prior 
     written permission. 

 This software is provided 'as is' with no express or implied warranties 
 of correctness or fitness for purpose.
 -------------------------------------------------------------------------
 Issue Date: 21/01/2002

 This file contains the code for implementing the key schedule for AES 
 (Rijndael) for block and key sizes of 16, 24, and 32 bytes.
*/

#if defined( INC_ALL ) || defined( INC_CHILD )
  #include "aesopt.h"
#else
  #include "crypt/aesopt.h"
#endif /* Compiler-specific includes */

#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7)
#error An illegal block size has been specified.
#endif  

/* Subroutine to set the block size (if variable) in bytes, legal
   values being 16, 24 and 32. 
*/

#if !defined(BLOCK_SIZE) && defined(SET_BLOCK_LENGTH)

aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1])
{
#if !defined(FIXED_TABLES)
    if(!tab_init) gen_tabs();
#endif

    if((blen & 7) || blen < 16 || blen > 32) 
    {     
        cx->n_blk = 0; return aes_bad;
    }

    cx->n_blk = blen;
    return aes_good;
}

#endif

/* Initialise the key schedule from the user supplied key. The key
   length is now specified in bytes - 16, 24 or 32 as appropriate.
   This corresponds to bit lengths of 128, 192 and 256 bits, and
   to Nk values of 4, 6 and 8 respectively.

   The following macros implement a single cycle in the key 
   schedule generation process. The number of cycles needed 
   for each cx->n_col and nk value is:
 
    nk =             4  5  6  7  8
    ------------------------------
    cx->n_col = 4   10  9  8  7  7
    cx->n_col = 5   14 11 10  9  9
    cx->n_col = 6   19 15 12 11 11
    cx->n_col = 7   21 19 16 13 14
    cx->n_col = 8   29 23 19 17 14
*/

#if defined(ENCRYPTION_KEY_SCHEDULE)

#define ke4(k,i) \
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
}
#define kel4(k,i) \
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
}

#define ke6(k,i) \
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
    k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
}
#define kel6(k,i) \
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
}

#define ke8(k,i) \
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
    k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
    k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
}
#define kel8(k,i) \
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
}

aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1])
{   uint32_t    ss[8]; 

#if !defined(FIXED_TABLES)
    if(!tab_init) gen_tabs();
#endif

#if !defined(BLOCK_SIZE)
    if(!cx->n_blk) cx->n_blk = 16;
#else
    cx->n_blk = BLOCK_SIZE;
#endif
    
    cx->n_blk = (cx->n_blk & ~3) | 1;

    cx->k_sch[0] = ss[0] = word_in(in_key     );
    cx->k_sch[1] = ss[1] = word_in(in_key +  4);
    cx->k_sch[2] = ss[2] = word_in(in_key +  8);
    cx->k_sch[3] = ss[3] = word_in(in_key + 12);

#if (BLOCK_SIZE == 16) && (ENC_UNROLL != NONE)

    switch(klen)
    {
    case 16:    ke4(cx->k_sch, 0); ke4(cx->k_sch, 1); 
                ke4(cx->k_sch, 2); ke4(cx->k_sch, 3);
                ke4(cx->k_sch, 4); ke4(cx->k_sch, 5); 
                ke4(cx->k_sch, 6); ke4(cx->k_sch, 7);
                ke4(cx->k_sch, 8); kel4(cx->k_sch, 9); 
                cx->n_rnd = 10; break;
    case 24:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                ke6(cx->k_sch, 0); ke6(cx->k_sch, 1); 
                ke6(cx->k_sch, 2); ke6(cx->k_sch, 3);
                ke6(cx->k_sch, 4); ke6(cx->k_sch, 5); 
                ke6(cx->k_sch, 6); kel6(cx->k_sch, 7); 
                cx->n_rnd = 12; break;
    case 32:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                cx->k_sch[6] = ss[6] = word_in(in_key + 24);
                cx->k_sch[7] = ss[7] = word_in(in_key + 28);
                ke8(cx->k_sch, 0); ke8(cx->k_sch, 1); 
                ke8(cx->k_sch, 2); ke8(cx->k_sch, 3);
                ke8(cx->k_sch, 4); ke8(cx->k_sch, 5); 
                kel8(cx->k_sch, 6); 
                cx->n_rnd = 14; break;
    default:    cx->n_rnd = 0; return aes_bad; 
    }
#else
    {   uint32_t i, l;
        cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6;
        l = (nc * cx->n_rnd + nc - 1) / (klen >> 2);

        switch(klen)
        {
        case 16:    for(i = 0; i < l; ++i)
                        ke4(cx->k_sch, i);
                    break;
        case 24:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                    cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                    for(i = 0; i < l; ++i)
                        ke6(cx->k_sch, i);
                    break;
        case 32:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                    cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                    cx->k_sch[6] = ss[6] = word_in(in_key + 24);
                    cx->k_sch[7] = ss[7] = word_in(in_key + 28);
                    for(i = 0; i < l; ++i)
                        ke8(cx->k_sch,  i);
                    break;
        default:    cx->n_rnd = 0; return aes_bad; 
        }
    }
#endif

    return aes_good;
}

#endif

#if defined(DECRYPTION_KEY_SCHEDULE)

#if (DEC_ROUND != NO_TABLES)
#define d_vars  dec_imvars
#define ff(x)   inv_mcol(x)
#else
#define ff(x)   (x)
#define d_vars
#endif

#if 1
#define kdf4(k,i) \
{   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
    ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \
    ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
    ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
}
#define kd4(k,i) \
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
    k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
    k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
}
#define kdl4(k,i) \
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \
    k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
    k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
}
#else
#define kdf4(k,i) \
{   ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
}
#define kd4(k,i) \
{   ss[4] = ls_box(ss[3],3) ^ rcon_tab[i]; \
    ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
    ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
    ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
}
#define kdl4(k,i) \
{   ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
}
#endif

#define kdf6(k,i) \
{   ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
    ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
}
#define kd6(k,i) \
{   ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \
    ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
    ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
    ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
    ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
    ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
}
#define kdl6(k,i) \
{   ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
}

#define kdf8(k,i) \
{   ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
    ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
    ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
}
#define kd8(k,i) \
{   uint32_t g = ls_box(ss[7],3) ^ rcon_tab[i]; \
    ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
    ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
    ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
    ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
    g = ls_box(ss[3],0); \
    ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
    ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
    ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
    ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
}
#define kdl8(k,i) \
{   ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
    ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
}

/* Subroutine to set the block size (if variable) in bytes, legal
   values being 16, 24 and 32.
*/

aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1])
{   uint32_t    ss[8]; 
    d_vars

#if !defined(FIXED_TABLES)
    if(!tab_init) gen_tabs();
#endif

#if !defined(BLOCK_SIZE)
    if(!cx->n_blk) cx->n_blk = 16;
#else
    cx->n_blk = BLOCK_SIZE;
#endif

    cx->n_blk = (cx->n_blk & ~3) | 2;

    cx->k_sch[0] = ss[0] = word_in(in_key     );
    cx->k_sch[1] = ss[1] = word_in(in_key +  4);
    cx->k_sch[2] = ss[2] = word_in(in_key +  8);
    cx->k_sch[3] = ss[3] = word_in(in_key + 12);

#if (BLOCK_SIZE == 16) && (DEC_UNROLL != NONE)

    switch(klen)
    {
    case 16:    kdf4(cx->k_sch, 0); kd4(cx->k_sch, 1); 
                kd4(cx->k_sch, 2); kd4(cx->k_sch, 3);
                kd4(cx->k_sch, 4); kd4(cx->k_sch, 5); 
                kd4(cx->k_sch, 6); kd4(cx->k_sch, 7);
                kd4(cx->k_sch, 8); kdl4(cx->k_sch, 9); 
                cx->n_rnd = 10; break;
    case 24:    cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16));
                cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20));
                kdf6(cx->k_sch, 0); kd6(cx->k_sch, 1); 
                kd6(cx->k_sch, 2); kd6(cx->k_sch, 3);
                kd6(cx->k_sch, 4); kd6(cx->k_sch, 5); 
                kd6(cx->k_sch, 6); kdl6(cx->k_sch, 7); 
                cx->n_rnd = 12; break;
    case 32:    cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16));
                cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20));
                cx->k_sch[6] = ff(ss[6] = word_in(in_key + 24));
                cx->k_sch[7] = ff(ss[7] = word_in(in_key + 28));
                kdf8(cx->k_sch, 0); kd8(cx->k_sch, 1); 
                kd8(cx->k_sch, 2); kd8(cx->k_sch, 3);
                kd8(cx->k_sch, 4); kd8(cx->k_sch, 5); 
                kdl8(cx->k_sch, 6); 
                cx->n_rnd = 14; break;
    default:    cx->n_rnd = 0; return aes_bad; 
    }
#else
    {   uint32_t i, l;
        cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6;
        l = (nc * cx->n_rnd + nc - 1) / (klen >> 2);

        switch(klen)
        {
        case 16: 
                    for(i = 0; i < l; ++i)
                        ke4(cx->k_sch, i);
                    break;
        case 24:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                    cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                    for(i = 0; i < l; ++i)
                        ke6(cx->k_sch, i);
                    break;
        case 32:    cx->k_sch[4] = ss[4] = word_in(in_key + 16);
                    cx->k_sch[5] = ss[5] = word_in(in_key + 20);
                    cx->k_sch[6] = ss[6] = word_in(in_key + 24);
                    cx->k_sch[7] = ss[7] = word_in(in_key + 28);
                    for(i = 0; i < l; ++i)
                        ke8(cx->k_sch,  i);
                    break;
        default:    cx->n_rnd = 0; return aes_bad; 
        }
#if (DEC_ROUND != NO_TABLES)
        for(i = nc; i < nc * cx->n_rnd; ++i)
            cx->k_sch[i] = inv_mcol(cx->k_sch[i]);
#endif
    }
#endif

    return aes_good;
}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -