⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 square.cpp

📁 含有多种公开密钥算法、多种块加密、多种数据流加密、多种HASH函数、多种CheckSum校验、多种MAC校验等几十种加密算法的程序
💻 CPP
字号:
/************************************************** Square Source File                             ** (C) 1999-2002 The Botan Project                **************************************************/#include <botan/square.h>namespace Botan {/************************************************** Square Encryption                              **************************************************/void Square::enc(const byte in[], byte out[]) const   {   u32bit T0, T1, T2, T3, B0, B1, B2, B3;   B0 = TE0[in[ 0] ^ ME[ 0]] ^ TE1[in[ 4] ^ ME[ 4]] ^        TE2[in[ 8] ^ ME[ 8]] ^ TE3[in[12] ^ ME[12]] ^ EK[0];   B1 = TE0[in[ 1] ^ ME[ 1]] ^ TE1[in[ 5] ^ ME[ 5]] ^        TE2[in[ 9] ^ ME[ 9]] ^ TE3[in[13] ^ ME[13]] ^ EK[1];   B2 = TE0[in[ 2] ^ ME[ 2]] ^ TE1[in[ 6] ^ ME[ 6]] ^        TE2[in[10] ^ ME[10]] ^ TE3[in[14] ^ ME[14]] ^ EK[2];   B3 = TE0[in[ 3] ^ ME[ 3]] ^ TE1[in[ 7] ^ ME[ 7]] ^        TE2[in[11] ^ ME[11]] ^ TE3[in[15] ^ ME[15]] ^ EK[3];   for(u32bit j = 1; j != 7; j += 2)      {      T0 = TE0[get_byte(0, B0)] ^ TE1[get_byte(0, B1)] ^           TE2[get_byte(0, B2)] ^ TE3[get_byte(0, B3)] ^ EK[4*j+0];      T1 = TE0[get_byte(1, B0)] ^ TE1[get_byte(1, B1)] ^           TE2[get_byte(1, B2)] ^ TE3[get_byte(1, B3)] ^ EK[4*j+1];      T2 = TE0[get_byte(2, B0)] ^ TE1[get_byte(2, B1)] ^           TE2[get_byte(2, B2)] ^ TE3[get_byte(2, B3)] ^ EK[4*j+2];      T3 = TE0[get_byte(3, B0)] ^ TE1[get_byte(3, B1)] ^           TE2[get_byte(3, B2)] ^ TE3[get_byte(3, B3)] ^ EK[4*j+3];      B0 = TE0[get_byte(0, T0)] ^ TE1[get_byte(0, T1)] ^           TE2[get_byte(0, T2)] ^ TE3[get_byte(0, T3)] ^ EK[4*j+4];      B1 = TE0[get_byte(1, T0)] ^ TE1[get_byte(1, T1)] ^           TE2[get_byte(1, T2)] ^ TE3[get_byte(1, T3)] ^ EK[4*j+5];      B2 = TE0[get_byte(2, T0)] ^ TE1[get_byte(2, T1)] ^           TE2[get_byte(2, T2)] ^ TE3[get_byte(2, T3)] ^ EK[4*j+6];      B3 = TE0[get_byte(3, T0)] ^ TE1[get_byte(3, T1)] ^           TE2[get_byte(3, T2)] ^ TE3[get_byte(3, T3)] ^ EK[4*j+7];      }   out[ 0] = SE[get_byte(0, B0)] ^ ME[16];   out[ 1] = SE[get_byte(0, B1)] ^ ME[17];   out[ 2] = SE[get_byte(0, B2)] ^ ME[18];   out[ 3] = SE[get_byte(0, B3)] ^ ME[19];   out[ 4] = SE[get_byte(1, B0)] ^ ME[20];   out[ 5] = SE[get_byte(1, B1)] ^ ME[21];   out[ 6] = SE[get_byte(1, B2)] ^ ME[22];   out[ 7] = SE[get_byte(1, B3)] ^ ME[23];   out[ 8] = SE[get_byte(2, B0)] ^ ME[24];   out[ 9] = SE[get_byte(2, B1)] ^ ME[25];   out[10] = SE[get_byte(2, B2)] ^ ME[26];   out[11] = SE[get_byte(2, B3)] ^ ME[27];   out[12] = SE[get_byte(3, B0)] ^ ME[28];   out[13] = SE[get_byte(3, B1)] ^ ME[29];   out[14] = SE[get_byte(3, B2)] ^ ME[30];   out[15] = SE[get_byte(3, B3)] ^ ME[31];   }/************************************************** Square Decryption                              **************************************************/void Square::dec(const byte in[], byte out[]) const   {   u32bit T0, T1, T2, T3, B0, B1, B2, B3;   B0 = TD0[in[ 0] ^ MD[ 0]] ^ TD1[in[ 4] ^ MD[ 4]] ^        TD2[in[ 8] ^ MD[ 8]] ^ TD3[in[12] ^ MD[12]] ^ DK[0];   B1 = TD0[in[ 1] ^ MD[ 1]] ^ TD1[in[ 5] ^ MD[ 5]] ^        TD2[in[ 9] ^ MD[ 9]] ^ TD3[in[13] ^ MD[13]] ^ DK[1];   B2 = TD0[in[ 2] ^ MD[ 2]] ^ TD1[in[ 6] ^ MD[ 6]] ^        TD2[in[10] ^ MD[10]] ^ TD3[in[14] ^ MD[14]] ^ DK[2];   B3 = TD0[in[ 3] ^ MD[ 3]] ^ TD1[in[ 7] ^ MD[ 7]] ^        TD2[in[11] ^ MD[11]] ^ TD3[in[15] ^ MD[15]] ^ DK[3];   for(u32bit j = 1; j != 7; j += 2)      {      T0 = TD0[get_byte(0, B0)] ^ TD1[get_byte(0, B1)] ^           TD2[get_byte(0, B2)] ^ TD3[get_byte(0, B3)] ^ DK[4*j+0];      T1 = TD0[get_byte(1, B0)] ^ TD1[get_byte(1, B1)] ^           TD2[get_byte(1, B2)] ^ TD3[get_byte(1, B3)] ^ DK[4*j+1];      T2 = TD0[get_byte(2, B0)] ^ TD1[get_byte(2, B1)] ^           TD2[get_byte(2, B2)] ^ TD3[get_byte(2, B3)] ^ DK[4*j+2];      T3 = TD0[get_byte(3, B0)] ^ TD1[get_byte(3, B1)] ^           TD2[get_byte(3, B2)] ^ TD3[get_byte(3, B3)] ^ DK[4*j+3];      B0 = TD0[get_byte(0, T0)] ^ TD1[get_byte(0, T1)] ^           TD2[get_byte(0, T2)] ^ TD3[get_byte(0, T3)] ^ DK[4*j+4];      B1 = TD0[get_byte(1, T0)] ^ TD1[get_byte(1, T1)] ^           TD2[get_byte(1, T2)] ^ TD3[get_byte(1, T3)] ^ DK[4*j+5];      B2 = TD0[get_byte(2, T0)] ^ TD1[get_byte(2, T1)] ^           TD2[get_byte(2, T2)] ^ TD3[get_byte(2, T3)] ^ DK[4*j+6];      B3 = TD0[get_byte(3, T0)] ^ TD1[get_byte(3, T1)] ^           TD2[get_byte(3, T2)] ^ TD3[get_byte(3, T3)] ^ DK[4*j+7];      }   out[ 0] = SD[get_byte(0, B0)] ^ MD[16];   out[ 1] = SD[get_byte(0, B1)] ^ MD[17];   out[ 2] = SD[get_byte(0, B2)] ^ MD[18];   out[ 3] = SD[get_byte(0, B3)] ^ MD[19];   out[ 4] = SD[get_byte(1, B0)] ^ MD[20];   out[ 5] = SD[get_byte(1, B1)] ^ MD[21];   out[ 6] = SD[get_byte(1, B2)] ^ MD[22];   out[ 7] = SD[get_byte(1, B3)] ^ MD[23];   out[ 8] = SD[get_byte(2, B0)] ^ MD[24];   out[ 9] = SD[get_byte(2, B1)] ^ MD[25];   out[10] = SD[get_byte(2, B2)] ^ MD[26];   out[11] = SD[get_byte(2, B3)] ^ MD[27];   out[12] = SD[get_byte(3, B0)] ^ MD[28];   out[13] = SD[get_byte(3, B1)] ^ MD[29];   out[14] = SD[get_byte(3, B2)] ^ MD[30];   out[15] = SD[get_byte(3, B3)] ^ MD[31];   }/************************************************** Square Key Schedule                            **************************************************/void Square::key(const byte key[], u32bit)   {   SecureBuffer<u32bit, 36> XEK, XDK;   for(u32bit j = 0; j != 4; j++)      XEK[j] = make_u32bit(key[4*j], key[4*j+1], key[4*j+2], key[4*j+3]);   for(u32bit j = 0; j != 8; j++)      {      XEK[4*j+4] = XEK[4*j  ] ^ rotate_left(XEK[4*j+3], 8) ^ (0x01000000 << j);      XEK[4*j+5] = XEK[4*j+1] ^ XEK[4*j+4];      XEK[4*j+6] = XEK[4*j+2] ^ XEK[4*j+5];      XEK[4*j+7] = XEK[4*j+3] ^ XEK[4*j+6];      XDK.copy(28 - 4*j, XEK + 4*(j+1), 4);      transform(XEK + 4*j);      }   for(u32bit j = 0; j != 4; j++)      for(u32bit k = 0; k != 4; k++)         {         ME[4*j+k   ] = get_byte(k, XEK[j   ]);         ME[4*j+k+16] = get_byte(k, XEK[j+32]);         MD[4*j+k   ] = get_byte(k, XDK[j   ]);         MD[4*j+k+16] = get_byte(k, XEK[j   ]);         }   EK.copy(XEK + 4, 28);   DK.copy(XDK + 4, 28);   }/************************************************** Square's Inverse Linear Transformation         **************************************************/void Square::transform(u32bit round_key[4])   {   static const byte G[4][4] = {      { 0x02, 0x01, 0x01, 0x03 },      { 0x03, 0x02, 0x01, 0x01 },      { 0x01, 0x03, 0x02, 0x01 },      { 0x01, 0x01, 0x03, 0x02 } };   SecureBuffer<byte, 4> A[4], B[4];   for(u32bit j = 0; j != 4; j++)      for(u32bit k = 0; k != 4; k++)         A[j][k] = get_byte(k, round_key[j]);   for(u32bit j = 0; j != 4; j++)      for(u32bit k = 0; k != 4; k++)         for(u32bit l = 0; l != 4; l++)            B[j][k] ^= mul(A[j][l], G[l][k]);   for(u32bit j = 0; j != 4; j++)      round_key[j] = make_u32bit(B[j][0], B[j][1], B[j][2], B[j][3]);   }/************************************************** Multiply in GF(2^8)                            **************************************************/byte Square::mul(byte a, byte b)   {   if(a && b)      return ALog[(Log[a] + Log[b]) % 255];   else      return 0;   }/************************************************** Clear memory of sensitive data                 **************************************************/void Square::clear() throw()   {   EK.clear();   DK.clear();   ME.clear();   MD.clear();   }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -