📄 curve.cpp
字号:
/* borZoi - An Elliptic Curve Cryptography Library Copyright (C) 2001 Anthony Mulcahy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. \You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */#include "borzoi_util.h"Point Point::negative () { Point p = *this; p.y += p.x; return p;}Point& Point::operator= (const Point& p) { if (this != &p) { // avoid self assignment x = p.x; y = p.y; } return *this;}std::ostream& Point::put (std::ostream&s) { s<<"x:0x"; OCTETSTR x_buf = FE2OSP (x); //for (int i=x_buf.size()-1; i>=0; i--) { for (int i=0; i<x_buf.size(); i++) { s<<std::hex<<((x_buf[i]&0xf0)>>4); s<<std::hex<<(x_buf[i]&0xf); } s<<" y:0x"; OCTETSTR y_buf = FE2OSP (y); //for (int j=y_buf.size()-1; j>=0; j--) { for (int j=0; j<y_buf.size(); j++) { s<<std::hex<<((y_buf[j]&0xf0)>>4); s<<std::hex<<(y_buf[j]&0xf); } return s;}std::ostream& Curve::put (std::ostream&s) { s << "Y^2 + XY = x^3 + a2x^2 + a6\n"; s << "a2: "; OCTETSTR a2_buf = FE2OSP (a2); //for (int i=a2_buf.size()-1; i>=0; i--) { for (int i=0; i<a2_buf.size(); i++) { s<<std::hex<<((a2_buf[i]&0xf0)>>4); s<<std::hex<<(a2_buf[i]&0xf); } s << '\n'; s << "a6: "; OCTETSTR a6_buf = FE2OSP (a6); //for (int j=a6_buf.size()-1; j>=0; j--) { for (int j=0; j<a6_buf.size(); j++) { s<<std::hex<<((a6_buf[j]&0xf0)>>4); s<<std::hex<<(a6_buf[j]&0xf); } s << '\n'; return s;}// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography// by Mike RosingPoint Curve::add (Point p1, Point p2) { if (p1.isZero ()) return p2; if (p2.isZero ()) return p1; F2M x1 = p1.x + p2.x; F2M y1 = p1.y + p2.y; Point p3; if (x1.isZero()) return p3; F2M theta = x1.inverse() * y1; //F2M theta2 = theta * theta; p3.x = theta.sqr() + theta + p1.x + p2.x + a2; p3.y = (p1.x + p3.x)*theta + p3.x + p1.y; return p3;}// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography// by Mike RosingPoint Curve::dbl (Point p1) { Point p3; if ((p1.x).isZero ()) return p3; F2M theta = p1.x + (p1.x.inverse () * p1.y); //F2M theta2 = theta*theta; p3.x = theta.sqr() + theta + a2; p3.y = p1.x.sqr() + ((theta + F2M(1)) * p3.x); return p3;}// Based on Algorithm IV.1 on p. 63 of Elliptic Curves in Cryptography // by I. F. Blake, G. Seroussi, N. P. Smart.Point Curve::mul (BigInt k, Point P) { Point Q; for (long j=k.numBits()-1; j>=0; j--) { Q = dbl (Q); if (k.getBit(j)) { Q = add (Q, P); } } return Q;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -