⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 curve.cpp

📁 椭圆曲线Elliptic Curve)加密算法(
💻 CPP
字号:
/*    borZoi - An Elliptic Curve Cryptography Library   Copyright (C) 2001 Anthony Mulcahy   This program is free software; you can redistribute it and/or modify   it under the terms of the GNU General Public License as published by   the Free Software Foundation; either version 2, or (at your option)   any later version.   This program is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the   GNU General Public License for more details.   \You should have received a copy of the GNU General Public License   along with this program; if not, write to the Free Software Foundation,   Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */#include "borzoi_util.h"Point Point::negative () {	Point p = *this;	p.y += p.x;	return p;}Point& Point::operator= (const Point& p) {	if (this != &p) { // avoid self assignment		x = p.x; y = p.y;	}	return *this;}std::ostream& Point::put (std::ostream&s) {	s<<"x:0x";	OCTETSTR x_buf = FE2OSP (x);	//for (int i=x_buf.size()-1; i>=0; i--) {	for (int i=0; i<x_buf.size(); i++) {		s<<std::hex<<((x_buf[i]&0xf0)>>4);		s<<std::hex<<(x_buf[i]&0xf);	}	s<<" y:0x";	OCTETSTR y_buf = FE2OSP (y);	//for (int j=y_buf.size()-1; j>=0; j--) {	for (int j=0; j<y_buf.size(); j++) {		s<<std::hex<<((y_buf[j]&0xf0)>>4);		s<<std::hex<<(y_buf[j]&0xf);	}		return s;}std::ostream& Curve::put (std::ostream&s) {	s << "Y^2 + XY = x^3 + a2x^2 + a6\n";	s << "a2: ";	OCTETSTR a2_buf = FE2OSP (a2);	//for (int i=a2_buf.size()-1; i>=0; i--) {	for (int i=0; i<a2_buf.size(); i++) {		s<<std::hex<<((a2_buf[i]&0xf0)>>4);		s<<std::hex<<(a2_buf[i]&0xf);	}	s << '\n';	s << "a6: ";	OCTETSTR a6_buf = FE2OSP (a6);	//for (int j=a6_buf.size()-1; j>=0; j--) {	for (int j=0; j<a6_buf.size(); j++) {		s<<std::hex<<((a6_buf[j]&0xf0)>>4);		s<<std::hex<<(a6_buf[j]&0xf);	}	s << '\n';	return s;}// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography// by Mike RosingPoint Curve::add (Point p1, Point p2) {	if (p1.isZero ())		return p2;	if (p2.isZero ())		return p1;	F2M x1 = p1.x + p2.x;	F2M y1 = p1.y + p2.y;	Point p3;	if (x1.isZero())		return p3;	F2M theta = x1.inverse() * y1;	//F2M theta2 = theta * theta;	p3.x = theta.sqr() + theta + p1.x + p2.x + a2;	p3.y = (p1.x + p3.x)*theta + p3.x + p1.y;	return p3;}// Based on the equations in Chap. 5 of Implementing Elliptic Curve Cryptography// by Mike RosingPoint Curve::dbl (Point p1) {	Point p3;	if ((p1.x).isZero ())		return p3;	F2M theta = p1.x + (p1.x.inverse () * p1.y);	//F2M theta2 = theta*theta;	p3.x = theta.sqr() + theta + a2;	p3.y = p1.x.sqr() + ((theta + F2M(1)) * p3.x);	return p3;}// Based on Algorithm IV.1 on p. 63 of Elliptic Curves in Cryptography // by I. F. Blake, G. Seroussi, N. P. Smart.Point Curve::mul (BigInt k, Point P) { 	Point Q;	for (long j=k.numBits()-1; j>=0; j--) {		Q = dbl (Q);		if (k.getBit(j)) {			Q = add (Q, P);		}	}	return Q;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -