📄 prdtoa.c
字号:
if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) { PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); return PR_FAILURE; } strcpy(buf, s); if (rve) { *rve =#ifdef IEEE_Arith buf[3] ? buf + 8 :#endif buf + 3; PR_ASSERT(**rve == '\0'); } return PR_SUCCESS; }#endif#ifdef IBM d += 0; /* normalize */#endif if (!d) { *decpt = 1; if (bufsize < 2) { PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); return PR_FAILURE; } buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ if (rve) { *rve = buf + 1; PR_ASSERT(**rve == '\0'); } return PR_SUCCESS; } b = d2b(d, &be, &bbits);#ifdef Sudden_Underflow i = (PRInt32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else if ((i = (PRInt32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {#endif d2 = d; word0(d2) &= Frac_mask1; word0(d2) |= Exp_11;#ifdef IBM if (j = 11 - hi0bits(word0(d2) & Frac_mask)) d2 /= 1 << j;#endif /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias;#ifdef IBM i <<= 2; i += j;#endif#ifndef Sudden_Underflow denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P-1) - 1); x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); d2 = x; word0(d2) -= 31*Exp_msk1; /* adjust exponent */ i -= (Bias + (P-1) - 1) + 1; denorm = 1; }#endif ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (PRInt32)ds; if (ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (d < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } if (mode < 0 || mode > 9) mode = 0; try_quick = 1; if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; switch(mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } j = sizeof(unsigned Long); for(result_k = 0; sizeof(Bigint) - sizeof(unsigned Long) <= i - j; j <<= 1) result_k++; result = Balloc(result_k); s = s0 = (char *)result; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; d2 = d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; d /= bigtens[n_bigtens-1]; ieps++; } for(; j; j >>= 1, i++) if (j & 1) { ieps++; ds *= bigtens[i]; } d /= ds; } else if ((j1 = -k) != 0) { d *= tens[j1 & 0xf]; for(j = j1 >> 4; j; j >>= 1, i++) if (j & 1) { ieps++; d *= bigtens[i]; } } if (k_check && d < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; d *= 10.; ieps++; } eps = ieps*d + 7.; word0(eps) -= (P-1)*Exp_msk1; if (ilim == 0) { S = mhi = 0; d -= 5.; if (d > eps) goto one_digit; if (d < -eps) goto no_digits; goto fast_failed; }#ifndef No_leftright if (leftright) { /* Use Steele & White method of only * generating digits needed. */ eps = 0.5/tens[ilim-1] - eps; for(i = 0;;) { L = (Long) d; d -= L; *s++ = '0' + (PRInt32)L; if (d < eps) goto ret1; if (1. - d < eps) goto bump_up; if (++i >= ilim) break; eps *= 10.; d *= 10.; } } else {#endif /* Generate ilim digits, then fix them up. */ eps *= tens[ilim-1]; for(i = 1;; i++, d *= 10.) { L = (Long) d; d -= L; *s++ = '0' + (PRInt32)L; if (i == ilim) { if (d > 0.5 + eps) goto bump_up; else if (d < 0.5 - eps) { while(*--s == '0'){} /* just count -- nothing to execute */ s++; goto ret1; } break; } }#ifndef No_leftright }#endif fast_failed: s = s0; d = d2; k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || d <= 5*ds) goto no_digits; goto one_digit; } for(i = 1;; i++) { L = (Long) (d / ds); d -= L*ds;#ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (d < 0) { L--; d += ds; }#endif *s++ = '0' + (PRInt32)L; if (i == ilim) { d += d; if ((d > ds) || (d == ds && L & 1)) { bump_up: while(*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } if (!(d *= 10.)) break; } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = 0; if (leftright) { if (mode < 2) { i =#ifndef Sudden_Underflow denorm ? be + (Bias + (P-1) - 1 + 1) :#endif#ifdef IBM 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);#else 1 + P - bbits;#endif } else { j = ilim - 1; if (m5 >= j) m5 -= j; else { s5 += j -= m5; b5 += j; m5 = 0; } if ((i = ilim) < 0) { m2 -= i; i = 0; } } b2 += i; s2 += i; mhi = i2b(1); } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); b1 = mult(mhi, b); Bfree(b); b = b1; } if ((j = b5 - m5) != 0) b = pow5mult(b, j); } else b = pow5mult(b, b5); } S = i2b(1); if (s5 > 0) S = pow5mult(S, s5); /* Check for special case that d is a normalized power of 2. */ if (mode < 2) { if (!word1(d) && !(word0(d) & Bndry_mask)#ifndef Sudden_Underflow && word0(d) & Exp_mask#endif ) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } else spec_case = 0; } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */#ifdef Pack_32 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) i = 32 - i;#else if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) i = 16 - i;#endif if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } if (b2 > 0) b = lshift(b, b2); if (s2 > 0) S = lshift(S, s2); if (k_check) { if (cmp(b,S) < 0) { k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (leftright) mhi = multadd(mhi, 10, 0); ilim = ilim1; } } if (ilim <= 0 && mode > 2) { if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } one_digit: *s++ = '1'; k++; goto ret; } if (leftright) { if (m2 > 0) mhi = lshift(mhi, m2); /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if (spec_case) { mhi = Balloc(mhi->k); Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P); } for(i = 1;;i++) { dig = quorem(b,S) + '0'; /* Do we yet have the shortest decimal string * that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi); j1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta);#ifndef ROUND_BIASED if (j1 == 0 && !mode && !(word1(d) & 1)) { if (dig == '9') goto round_9_up; if (j > 0) dig++; *s++ = dig; goto ret; }#endif if ((j < 0) || ((j == 0) && (!mode)#ifndef ROUND_BIASED && (!(word1(d) & 1)))#endif ) { if (j1 > 0) { b = lshift(b, 1); j1 = cmp(b, S); if (((j1 > 0) || (j1 == 0 && dig & 1)) && (dig++ == '9')) goto round_9_up; } *s++ = dig; goto ret; } if (j1 > 0) { if (dig == '9') { /* possible if i == 1 */ round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } *s++ = dig; if (i == ilim) break; b = multadd(b, 10, 0); if (mlo == mhi) mlo = mhi = multadd(mhi, 10, 0); else { mlo = multadd(mlo, 10, 0); mhi = multadd(mhi, 10, 0); } } } else for(i = 1;; i++) { *s++ = dig = quorem(b,S) + '0'; if (i >= ilim) break; b = multadd(b, 10, 0); } /* Round off last digit */ b = lshift(b, 1); j = cmp(b, S); if ((j > 0) || (j == 0 && dig & 1)) { roundoff: while(*--s == '9') if (s == s0) { k++; *s++ = '1'; goto ret; } ++*s++; } else { while(*--s == '0'){} /* just count -- nothing to execute */ s++; }ret: Bfree(S); if (mhi) { if (mlo && mlo != mhi) Bfree(mlo); Bfree(mhi); }ret1: Bfree(b); *s = 0; *decpt = k + 1; strsize = (s - s0) + 1; if (strsize <= bufsize) { retval = PR_SUCCESS; memcpy(buf, s0, strsize); if (rve) { *rve = buf + strsize - 1; PR_ASSERT(**rve == '\0'); } } else { PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); retval = PR_FAILURE; } /* cleanup */ result->k = result_k; result->maxwds = 1 << result_k; Bfree(result); return retval;}/*** conversion routines for floating point** prcsn - number of digits of precision to generate floating** point value.** This should be reparameterized so that you can send in a** prcn for the positive and negative ranges. For now, ** conform to the ECMA JavaScript spec which says numbers** less than 1e-6 are in scientific notation.** Also, the ECMA spec says that there should always be a** '+' or '-' after the 'e' in scientific notation*/PR_IMPLEMENT(void)PR_cnvtf(char *buf,int bufsz, int prcsn,double fval){ PRIntn decpt, sign, numdigits; char *num, *nump; char *bufp = buf; char *endnum; /* If anything fails, we store an empty string in 'buf' */ num = (char*)PR_MALLOC(bufsz); if (num == NULL) { buf[0] = '\0'; return; } /* XXX Why use mode 1? */ if (PR_dtoa(fval,1,prcsn,&decpt,&sign,&endnum,num,bufsz) == PR_FAILURE) { buf[0] = '\0'; goto done; } numdigits = endnum - num; nump = num; if (sign && !(word0(fval) == Sign_bit && word1(fval) == 0) && !((word0(fval) & Exp_mask) == Exp_mask && (word1(fval) || (word0(fval) & 0xfffff)))) { *bufp++ = '-'; } if(decpt == 9999){ while((*bufp++ = *nump++) != 0){} /* nothing to execute */ goto done; } if(decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5){ *bufp++ = *nump++; if(numdigits != 1){ *bufp++ = '.'; } while(*nump != '\0'){ *bufp++ = *nump++; } *bufp++ = 'e'; PR_snprintf(bufp,bufsz - (bufp - buf), "%+d",decpt-1); } else if(decpt >= 0){ if(decpt == 0){ *bufp++ = '0'; } else { while(decpt--){ if(*nump != '\0'){ *bufp++ = *nump++; } else { *bufp++ = '0'; } } } if(*nump != '\0'){ *bufp++ = '.'; while(*nump != '\0'){ *bufp++ = *nump++; } } *bufp++ = '\0'; } else if(decpt < 0){ *bufp++ = '0'; *bufp++ = '.'; while(decpt++){ *bufp++ = '0'; } while(*nump != '\0'){ *bufp++ = *nump++; } *bufp++ = '\0'; }done: PR_DELETE(num);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -