⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 prdtoa.c

📁 Netscape NSPR库源码
💻 C
📖 第 1 页 / 共 4 页
字号:
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- *//*  * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ *  * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. *  * The Original Code is the Netscape Portable Runtime (NSPR). *  * The Initial Developer of the Original Code is Netscape * Communications Corporation.  Portions created by Netscape are  * Copyright (C) 1998-2000 Netscape Communications Corporation.  All * Rights Reserved. *  * Contributor(s): *  * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable  * instead of those above.  If you wish to allow use of your  * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL.  If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the * GPL. */#include "primpl.h"/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991 by AT&T. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to	David M. Gay	AT&T Bell Laboratories, Room 2C-463	600 Mountain Avenue	Murray Hill, NJ 07974-2070	U.S.A.	dmg@research.att.com or research!dmg *//* PR_strtod for IEEE-, VAX-, and IBM-arithmetic machines. * * This PR_strtod returns a nearest machine number to the input decimal * string (or sets the error code to PR_RANGE_ERROR).  With IEEE * arithmetic, ties are broken by the IEEE round-even rule.  Otherwise * ties are broken by biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read * Floating-Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * *	1. We only require IEEE, IBM, or VAX double-precision *		arithmetic (not IEEE double-extended). *	2. We get by with floating-point arithmetic in a case that *		Clinger missed -- when we're computing d * 10^n *		for a small integer d and the integer n is not too *		much larger than 22 (the maximum integer k for which *		we can represent 10^k exactly), we may be able to *		compute (d*10^k) * 10^(e-k) with just one roundoff. *	3. Rather than a bit-at-a-time adjustment of the binary *		result in the hard case, we use floating-point *		arithmetic to determine the adjustment to within *		one bit; only in really hard cases do we need to *		compute a second residual. *	4. Because of 3., we don't need a large table of powers of 10 *		for ten-to-e (just some small tables, e.g. of 10^k *		for 0 <= k <= 22). *//* * #define IEEE_8087 for IEEE-arithmetic machines where the least *	significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most *	significant byte has the lowest address. * #define Long int on machines with 32-bit ints and 64-bit longs. * #define Sudden_Underflow for IEEE-format machines without gradual *	underflow (i.e., that flush to zero on underflow). * #define IBM for IBM mainframe-style floating-point arithmetic. * #define VAX for VAX-style floating-point arithmetic. * #define Unsigned_Shifts if >> does treats its left operand as unsigned. * #define No_leftright to omit left-right logic in fast floating-point *	computation of PR_dtoa. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines *	that use extended-precision instructions to compute rounded *	products and quotients) with IBM. * #define ROUND_BIASED for IEEE-format with biased rounding. * #define Inaccurate_Divide for IEEE-format with correctly rounded *	products but inaccurate quotients, e.g., for Intel i860. * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision *	integer arithmetic.  Whether this speeds things up or slows things *	down depends on the machine and the number being converted. * #define KR_headers for old-style C function headers. * #define Bad_float_h if your system lacks a float.h or if it does not *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX. * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) *	if memory is available and otherwise does something you deem *	appropriate.  If MALLOC is undefined, malloc will be invoked *	directly -- and assumed always to succeed. */#if  defined(IS_LITTLE_ENDIAN)#define IEEE_8087#else#define IEEE_MC68k#endif#ifndef Long#if PR_BYTES_PER_LONG == 4#define Long long#elif PR_BYTES_PER_INT == 4#define Long int#else#error "No suitable type for Long"#endif#endif#ifdef DEBUG_DTOA#include "stdio.h"#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}#else#define Bug(x)#endif#include "stdlib.h"#include "string.h"#ifdef MALLOCextern void *MALLOC(size_t);#else#define MALLOC PR_MALLOC#endif#ifdef Bad_float_h#undef __STDC__#ifdef IEEE_MC68k#define IEEE_ARITHMETIC#endif#ifdef IEEE_8087#define IEEE_ARITHMETIC#endif#ifdef IEEE_ARITHMETIC#define DBL_DIG 15#define DBL_MAX_10_EXP 308#define DBL_MAX_EXP 1024#define FLT_RADIX 2#define FLT_ROUNDS 1#define DBL_MAX 1.7976931348623157e+308#endif#ifdef IBM#define DBL_DIG 16#define DBL_MAX_10_EXP 75#define DBL_MAX_EXP 63#define FLT_RADIX 16#define FLT_ROUNDS 0#define DBL_MAX 7.2370055773322621e+75#endif#ifdef VAX#define DBL_DIG 16#define DBL_MAX_10_EXP 38#define DBL_MAX_EXP 127#define FLT_RADIX 2#define FLT_ROUNDS 1#define DBL_MAX 1.7014118346046923e+38#endif#ifndef LONG_MAX#define LONG_MAX 2147483647#endif#else#include "float.h"#endif#ifndef __MATH_H__#include "math.h"#endif#ifndef CONST#define CONST const#endif#ifdef Unsigned_Shifts#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;#else#define Sign_Extend(a,b) /*no-op*/#endif#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM)	!= 1Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.#endif#ifdef IEEE_8087#define word0(x) ((unsigned Long *)&x)[1]#define word1(x) ((unsigned Long *)&x)[0]#else#define word0(x) ((unsigned Long *)&x)[0]#define word1(x) ((unsigned Long *)&x)[1]#endif/* The following definition of Storeinc is appropriate for MIPS processors. * An alternative that might be better on some machines is * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) */#if defined(IEEE_8087) + defined(VAX)#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \((unsigned short *)a)[0] = (unsigned short)c, a++)#else#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \((unsigned short *)a)[1] = (unsigned short)c, a++)#endif/* #define P DBL_MANT_DIG *//* Ten_pmax = floor(P*log(2)/log(5)) *//* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 *//* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) *//* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */#if defined(IEEE_8087) + defined(IEEE_MC68k)#define Exp_shift  20#define Exp_shift1 20#define Exp_msk1    0x100000#define Exp_msk11   0x100000#define Exp_mask  0x7ff00000#define P 53#define Bias 1023#define IEEE_Arith#define Emin (-1022)#define Exp_1  0x3ff00000#define Exp_11 0x3ff00000#define Ebits 11#define Frac_mask  0xfffff#define Frac_mask1 0xfffff#define Ten_pmax 22#define Bletch 0x10#define Bndry_mask  0xfffff#define Bndry_mask1 0xfffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 1#define Tiny0 0#define Tiny1 1#define Quick_max 14#define Int_max 14#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */#else#undef  Sudden_Underflow#define Sudden_Underflow#ifdef IBM#define Exp_shift  24#define Exp_shift1 24#define Exp_msk1   0x1000000#define Exp_msk11  0x1000000#define Exp_mask  0x7f000000#define P 14#define Bias 65#define Exp_1  0x41000000#define Exp_11 0x41000000#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */#define Frac_mask  0xffffff#define Frac_mask1 0xffffff#define Bletch 4#define Ten_pmax 22#define Bndry_mask  0xefffff#define Bndry_mask1 0xffffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 4#define Tiny0 0x100000#define Tiny1 0#define Quick_max 14#define Int_max 15#else /* VAX */#define Exp_shift  23#define Exp_shift1 7#define Exp_msk1    0x80#define Exp_msk11   0x800000#define Exp_mask  0x7f80#define P 56#define Bias 129#define Exp_1  0x40800000#define Exp_11 0x4080#define Ebits 8#define Frac_mask  0x7fffff#define Frac_mask1 0xffff007f#define Ten_pmax 24#define Bletch 2#define Bndry_mask  0xffff007f#define Bndry_mask1 0xffff007f#define LSB 0x10000#define Sign_bit 0x8000#define Log2P 1#define Tiny0 0x80#define Tiny1 0#define Quick_max 15#define Int_max 15#endif#endif#ifndef IEEE_Arith#define ROUND_BIASED#endif#ifdef RND_PRODQUOT#define rounded_product(a,b) a = rnd_prod(a, b)#define rounded_quotient(a,b) a = rnd_quot(a, b)extern double rnd_prod(double, double), rnd_quot(double, double);#else#define rounded_product(a,b) a *= b#define rounded_quotient(a,b) a /= b#endif#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))#define Big1 0xffffffff#ifndef Just_16/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. * This makes some inner loops simpler and sometimes saves work * during multiplications, but it often seems to make things slightly * slower.  Hence the default is now to store 32 bits per Long. */#ifndef Pack_32#define Pack_32#endif#endif#define Kmax 15/* * Note: if you ever change struct Bigint, make sure that the * definition of the Bcopy(x,y) macro is still correct. */struct Bigint {	struct Bigint *next;	PRInt32 k, maxwds, sign, wds;	unsigned Long x[1];};typedef struct Bigint Bigint;static Bigint *freelist[Kmax+1];static PRLock *freelist_lock;static Bigint *Balloc(PRInt32 k){	PRInt32 x;	Bigint *rv;	PR_Lock(freelist_lock);	if ((rv = freelist[k]) != NULL) {		freelist[k] = rv->next;	}	PR_Unlock(freelist_lock);	if (rv == NULL) {		x = 1 << k;		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));		rv->k = k;		rv->maxwds = x;	}	rv->sign = rv->wds = 0;	return rv;}static void Bfree (Bigint *v){	if (v) {		PR_Lock(freelist_lock);		v->next = freelist[v->k];		freelist[v->k] = v;		PR_Unlock(freelist_lock);	}}/* * The definition of the Bcopy macro is highly dependent on the * ordering of members in struct Bigint. */#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \						  y->wds*sizeof(Long) + 2*sizeof(PRInt32))static Bigint *multadd(Bigint *b, PRInt32 m, PRInt32 a)	/* multiply by m and add a */{	PRInt32 i, wds;	unsigned Long *x, y;#ifdef Pack_32	unsigned Long xi, z;#endif	Bigint *b1;	wds = b->wds;	x = b->x;	i = 0;	do {#ifdef Pack_32		xi = *x;		y = (xi & 0xffff) * m + a;		z = (xi >> 16) * m + (y >> 16);		a = (PRInt32)(z >> 16);		*x++ = (z << 16) + (y & 0xffff);#else		y = *x * m + a;		a = (PRInt32)(y >> 16);		*x++ = y & 0xffff;#endif	}	while(++i < wds);	if (a) {		if (wds >= b->maxwds) {			b1 = Balloc(b->k+1);			Bcopy(b1, b);			Bfree(b);			b = b1;		}		b->x[wds++] = a;		b->wds = wds;	}	return b;}static Bigint *s2b(CONST char *s, PRInt32 nd0, PRInt32 nd, unsigned Long y9){	Bigint *b;	PRInt32 i, k;	Long x, y;	x = (nd + 8) / 9;	for(k = 0, y = 1; x > y; y <<= 1, k++) ;#ifdef Pack_32	b = Balloc(k);	b->x[0] = y9;	b->wds = 1;#else	b = Balloc(k+1);	b->x[0] = y9 & 0xffff;	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;#endif	i = 9;	if (9 < nd0) {		s += 9;		do b = multadd(b, 10, *s++ - '0');		while(++i < nd0);		s++;	}	else		s += 10;	for(; i < nd; i++)		b = multadd(b, 10, *s++ - '0');	return b;}static PRInt32 hi0bits(register unsigned Long x){	register PRInt32 k = 0;	if (!(x & 0xffff0000)) {		k = 16;		x <<= 16;	}	if (!(x & 0xff000000)) {		k += 8;		x <<= 8;	}	if (!(x & 0xf0000000)) {		k += 4;		x <<= 4;	}	if (!(x & 0xc0000000)) {		k += 2;		x <<= 2;	}	if (!(x & 0x80000000)) {		k++;		if (!(x & 0x40000000))			return 32;	}	return k;}static PRInt32 lo0bits(unsigned Long *y){	register PRInt32 k;	register unsigned Long x = *y;	if (x & 7) {		if (x & 1)			return 0;		if (x & 2) {			*y = x >> 1;			return 1;		}		*y = x >> 2;		return 2;	}	k = 0;	if (!(x & 0xffff)) {		k = 16;		x >>= 16;	}	if (!(x & 0xff)) {		k += 8;		x >>= 8;	}	if (!(x & 0xf)) {		k += 4;		x >>= 4;	}	if (!(x & 0x3)) {		k += 2;		x >>= 2;	}	if (!(x & 1)) {		k++;		x >>= 1;		if (!x & 1)			return 32;	}	*y = x;	return k;}static Bigint *i2b(PRInt32 i){	Bigint *b;	b = Balloc(1);	b->x[0] = i;	b->wds = 1;	return b;}static Bigint *mult(CONST Bigint *a, CONST Bigint *b){	CONST Bigint *t;	Bigint *c;	PRInt32 k, wa, wb, wc;	unsigned Long carry, y, z;	unsigned Long *xc, *xc0, *xce;	CONST unsigned Long *x, *xa, *xae, *xb, *xbe;#ifdef Pack_32	unsigned Long z2;#endif	if (a->wds < b->wds) {		t = a;		a = b;		b = t;	}	k = a->k;	wa = a->wds;	wb = b->wds;	wc = wa + wb;	if (wc > a->maxwds)		k++;	c = Balloc(k);	for(xc = c->x, xce = xc + wc; xc < xce; xc++)		*xc = 0;	xa = a->x;	xae = xa + wa;	xb = b->x;	xbe = xb + wb;	xc0 = c->x;#ifdef Pack_32	for(; xb < xbe; xb++, xc0++) {		if ((y = *xb & 0xffff) != 0) {			x = xa;			xc = xc0;			carry = 0;			do {				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;				carry = z >> 16;				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;				carry = z2 >> 16;				Storeinc(xc, z2, z);			}			while(x < xae);			*xc = carry;		}		if ((y = *xb >> 16) != 0) {			x = xa;			xc = xc0;			carry = 0;			z2 = *xc;			do {				z = (*x & 0xffff) * y + (*xc >> 16) + carry;				carry = z >> 16;				Storeinc(xc, z, z2);				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;				carry = z2 >> 16;			}			while(x < xae);			*xc = z2;		}	}#else	for(; xb < xbe; xc0++) {		if (y = *xb++) {			x = xa;			xc = xc0;			carry = 0;			do {				z = *x++ * y + *xc + carry;				carry = z >> 16;				*xc++ = z & 0xffff;			}			while(x < xae);			*xc = carry;		}	}#endif	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;	c->wds = wc;	return c;}/* * 'p5s' points to a linked list of Bigints that are powers of 5. * This list grows on demand, and it can only grow: it won't change * in any other way.  So if we read 'p5s' or the 'next' field of * some Bigint on the list, and it is not NULL, we know it won't * change to NULL or some other value.  Only when the value of * 'p5s' or 'next' is NULL do we need to acquire the lock and add

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -