⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pi.c

📁 支持SSL v2/v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509v3证书等安全协议或标准的开发库编译用到NSPR
💻 C
字号:
/* * pi.c * * Compute pi to an arbitrary number of digits.  Uses Machin's formula, * like everyone else on the planet: *  *    pi = 16 * arctan(1/5) - 4 * arctan(1/239) * * This is pretty effective for up to a few thousand digits, but it * gets pretty slow after that. * * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the MPI Arbitrary Precision Integer Arithmetic * library. * * The Initial Developer of the Original Code is Michael J. Fromberger. * Portions created by Michael J. Fromberger are  * Copyright (C) 1999, 2000 Michael J. Fromberger.  * All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable * instead of those above.  If you wish to allow use of your * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL.  If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the GPL. * * $Id: pi.c,v 1.1 2000/07/14 00:45:00 nelsonb%netscape.com Exp $  */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include <time.h>#include "mpi.h"mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum);int main(int argc, char *argv[]){  mp_err       res;  mp_digit     ndigits;  mp_int       sum1, sum2;  clock_t      start, stop;  int          out = 0;  /* Make the user specify precision on the command line */  if(argc < 2) {    fprintf(stderr, "Usage: %s <num-digits>\n", argv[0]);    return 1;  }  if((ndigits = abs(atoi(argv[1]))) == 0) {    fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);    return 1;  }  start = clock();  mp_init(&sum1); mp_init(&sum2);  /* sum1 = 16 * arctan(1/5)  */  if((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) {    fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));    out = 1; goto CLEANUP;  }  /* sum2 = 4 * arctan(1/239) */  if((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) {    fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));    out = 1; goto CLEANUP;  }  /* pi = sum1 - sum2         */  if((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) {    fprintf(stderr, "%s: mp_sub: %s\n", argv[0], mp_strerror(res));    out = 1; goto CLEANUP;  }  stop = clock();  /* Write the output in decimal */  {    char  *buf = malloc(mp_radix_size(&sum1, 10));    if(buf == NULL) {      fprintf(stderr, "%s: out of memory\n", argv[0]);      out = 1; goto CLEANUP;    }    mp_todecimal(&sum1, buf);    printf("%s\n", buf);    free(buf);  }  fprintf(stderr, "Computation took %.2f sec.\n", 	  (double)(stop - start) / CLOCKS_PER_SEC); CLEANUP:  mp_clear(&sum1);  mp_clear(&sum2);  return out;}/* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum){  mp_int   t, v;  mp_digit q = 1, rd;  mp_err   res;  int      sign = 1;  prec += 3;  /* push inaccuracies off the end */  mp_init(&t); mp_set(&t, 10);  mp_init(&v);   if((res = mp_expt_d(&t, prec, &t)) != MP_OKAY ||  /* get 10^prec    */     (res = mp_mul_d(&t, mul, &t)) != MP_OKAY ||    /* ... times mul  */     (res = mp_mul_d(&t, x, &t)) != MP_OKAY)        /* ... times x    */    goto CLEANUP;  /*    The extra multiplication by x in the above takes care of what    would otherwise have to be a special case for 1 / x^1 during the    first loop iteration.  A little sneaky, but effective.    We compute arctan(1/x) by the formula:         1     1       1       1	 - - ----- + ----- - ----- + ...	 x   3 x^3   5 x^5   7 x^7    We multiply through by 'mul' beforehand, which gives us a couple    more iterations and more precision   */  x *= x; /* works as long as x < sqrt(RADIX), which it is here */  mp_zero(sum);  do {    if((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY)      goto CLEANUP;    if(sign < 0 && rd != 0)      mp_add_d(&t, 1, &t);    if((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY)      goto CLEANUP;    if(sign < 0 && rd != 0)      mp_add_d(&v, 1, &v);    if(sign > 0)      res = mp_add(sum, &v, sum);    else      res = mp_sub(sum, &v, sum);    if(res != MP_OKAY)      goto CLEANUP;    sign *= -1;    q += 2;  } while(mp_cmp_z(&t) != 0);  /* Chop off inaccurate low-order digits */  mp_div_d(sum, 1000, sum, NULL); CLEANUP:  mp_clear(&v);  mp_clear(&t);  return res;}/*------------------------------------------------------------------------*//* HERE THERE BE DRAGONS                                                  */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -