📄 pi.c
字号:
/* * pi.c * * Compute pi to an arbitrary number of digits. Uses Machin's formula, * like everyone else on the planet: * * pi = 16 * arctan(1/5) - 4 * arctan(1/239) * * This is pretty effective for up to a few thousand digits, but it * gets pretty slow after that. * * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the MPI Arbitrary Precision Integer Arithmetic * library. * * The Initial Developer of the Original Code is Michael J. Fromberger. * Portions created by Michael J. Fromberger are * Copyright (C) 1999, 2000 Michael J. Fromberger. * All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the GPL. * * $Id: pi.c,v 1.1 2000/07/14 00:45:00 nelsonb%netscape.com Exp $ */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include <time.h>#include "mpi.h"mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum);int main(int argc, char *argv[]){ mp_err res; mp_digit ndigits; mp_int sum1, sum2; clock_t start, stop; int out = 0; /* Make the user specify precision on the command line */ if(argc < 2) { fprintf(stderr, "Usage: %s <num-digits>\n", argv[0]); return 1; } if((ndigits = abs(atoi(argv[1]))) == 0) { fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]); return 1; } start = clock(); mp_init(&sum1); mp_init(&sum2); /* sum1 = 16 * arctan(1/5) */ if((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) { fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } /* sum2 = 4 * arctan(1/239) */ if((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) { fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } /* pi = sum1 - sum2 */ if((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) { fprintf(stderr, "%s: mp_sub: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } stop = clock(); /* Write the output in decimal */ { char *buf = malloc(mp_radix_size(&sum1, 10)); if(buf == NULL) { fprintf(stderr, "%s: out of memory\n", argv[0]); out = 1; goto CLEANUP; } mp_todecimal(&sum1, buf); printf("%s\n", buf); free(buf); } fprintf(stderr, "Computation took %.2f sec.\n", (double)(stop - start) / CLOCKS_PER_SEC); CLEANUP: mp_clear(&sum1); mp_clear(&sum2); return out;}/* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum){ mp_int t, v; mp_digit q = 1, rd; mp_err res; int sign = 1; prec += 3; /* push inaccuracies off the end */ mp_init(&t); mp_set(&t, 10); mp_init(&v); if((res = mp_expt_d(&t, prec, &t)) != MP_OKAY || /* get 10^prec */ (res = mp_mul_d(&t, mul, &t)) != MP_OKAY || /* ... times mul */ (res = mp_mul_d(&t, x, &t)) != MP_OKAY) /* ... times x */ goto CLEANUP; /* The extra multiplication by x in the above takes care of what would otherwise have to be a special case for 1 / x^1 during the first loop iteration. A little sneaky, but effective. We compute arctan(1/x) by the formula: 1 1 1 1 - - ----- + ----- - ----- + ... x 3 x^3 5 x^5 7 x^7 We multiply through by 'mul' beforehand, which gives us a couple more iterations and more precision */ x *= x; /* works as long as x < sqrt(RADIX), which it is here */ mp_zero(sum); do { if((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY) goto CLEANUP; if(sign < 0 && rd != 0) mp_add_d(&t, 1, &t); if((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY) goto CLEANUP; if(sign < 0 && rd != 0) mp_add_d(&v, 1, &v); if(sign > 0) res = mp_add(sum, &v, sum); else res = mp_sub(sum, &v, sum); if(res != MP_OKAY) goto CLEANUP; sign *= -1; q += 2; } while(mp_cmp_z(&t) != 0); /* Chop off inaccurate low-order digits */ mp_div_d(sum, 1000, sum, NULL); CLEANUP: mp_clear(&v); mp_clear(&t); return res;}/*------------------------------------------------------------------------*//* HERE THERE BE DRAGONS */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -