⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpi-priv.h

📁 支持SSL v2/v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509v3证书等安全协议或标准的开发库编译用到NSPR
💻 H
字号:
/* *  mpi-priv.h	- Private header file for MPI  *  Arbitrary precision integer arithmetic library * *  NOTE WELL: the content of this header file is NOT part of the "public" *  API for the MPI library, and may change at any time.   *  Application programs that use libmpi should NOT include this header file. * * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the MPI Arbitrary Precision Integer Arithmetic * library. * * The Initial Developer of the Original Code is Michael J. Fromberger. * Portions created by Michael J. Fromberger are  * Copyright (C) 1998, 1999, 2000 Michael J. Fromberger.  * All Rights Reserved. * * Contributor(s): *	Netscape Communications Corporation  * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable * instead of those above.  If you wish to allow use of your * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL.  If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the GPL. * *  $Id: mpi-priv.h,v 1.11.2.1 2000/11/21 03:32:39 nelsonb%netscape.com Exp $ */#ifndef _MPI_PRIV_H_#define _MPI_PRIV_H_ 1#include "mpi.h"#include <stdlib.h>#include <string.h>#include <ctype.h>#if MP_DEBUG#include <stdio.h>#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}#else#define DIAG(T,V)#endif/* If we aren't using a wired-in logarithm table, we need to include   the math library to get the log() function *//* {{{ s_logv_2[] - log table for 2 in various bases */#if MP_LOGTAB/*  A table of the logs of 2 for various bases (the 0 and 1 entries of  this table are meaningless and should not be referenced).    This table is used to compute output lengths for the mp_toradix()  function.  Since a number n in radix r takes up about log_r(n)  digits, we estimate the output size by taking the least integer  greater than log_r(n), where:  log_r(n) = log_2(n) * log_r(2)  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,  which are the output bases supported.   */extern const float s_logv_2[];#define LOG_V_2(R)  s_logv_2[(R)]#else/*    If MP_LOGTAB is not defined, use the math library to compute the   logarithms on the fly.  Otherwise, use the table.   Pick which works best for your system. */#include <math.h>#define LOG_V_2(R)  (log(2.0)/log(R))#endif /* if MP_LOGTAB *//* }}} *//* {{{ Digit arithmetic macros *//*  When adding and multiplying digits, the results can be larger than  can be contained in an mp_digit.  Thus, an mp_word is used.  These  macros mask off the upper and lower digits of the mp_word (the  mp_word may be more than 2 mp_digits wide, but we only concern  ourselves with the low-order 2 mp_digits) */#define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)#define  ACCUM(W)     (mp_digit)(W)#define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))#define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))/* }}} *//* {{{ Comparison constants */#define  MP_LT       -1#define  MP_EQ        0#define  MP_GT        1/* }}} *//* {{{ private function declarations *//*    If MP_MACRO is false, these will be defined as actual functions;   otherwise, suitable macro definitions will be used.  This works   around the fact that ANSI C89 doesn't support an 'inline' keyword   (although I hear C9x will ... about bloody time).  At present, the   macro definitions are identical to the function bodies, but they'll   expand in place, instead of generating a function call.   I chose these particular functions to be made into macros because   some profiling showed they are called a lot on a typical workload,   and yet they are primarily housekeeping. */#if MP_MACRO == 0 void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */ void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ void    *s_mp_alloc(size_t nb, size_t ni);       /* general allocator     */ void     s_mp_free(void *ptr);                   /* general free function */extern unsigned long mp_allocs;extern unsigned long mp_frees;extern unsigned long mp_copies;#else /* Even if these are defined as macros, we need to respect the settings    of the MP_MEMSET and MP_MEMCPY configuration options...  */ #if MP_MEMSET == 0  #define  s_mp_setz(dp, count) \       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} #else  #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) #endif /* MP_MEMSET */ #if MP_MEMCPY == 0  #define  s_mp_copy(sp, dp, count) \       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} #else  #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) #endif /* MP_MEMCPY */ #define  s_mp_alloc(nb, ni)  calloc(nb, ni) #define  s_mp_free(ptr) {if(ptr) free(ptr);}#endif /* MP_MACRO */mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */#if MP_MACRO == 0 void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */#else #define  s_mp_clamp(mp)\  { mp_size used = MP_USED(mp); \    while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \    MP_USED(mp) = used; \  } #endif /* MP_MACRO */void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);                                                /* normalize for division  */mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);		                               /* unsigned digit divide   */mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);                                               /* Barrett reduction       */mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);                                               /* a += b * RADIX^offset   */mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */#if MP_SQUAREmp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */#else#define  s_mp_sqr(a) s_mp_mul(a, a)#endifmp_err   s_mp_div(mp_int *a, mp_int *b);       /* magnitude divide        */mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */int      s_mp_outlen(int bits, int r);          /* output length in bytes */mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */void     s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c);void     s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, 			 mp_digit *c);void     s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, 			      mp_digit *c);void     s_mpv_sqr_add_prop(const mp_digit *a, mp_size a_len, mp_digit *sqrs);mp_err   s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, 		         mp_digit *quot, mp_digit *rem);/* c += a * b * (MP_RADIX ** offset);  */#define s_mp_mul_d_add_offset(a, b, c, off) \(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)/* }}} */#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -