📄 mpi-priv.h
字号:
/* * mpi-priv.h - Private header file for MPI * Arbitrary precision integer arithmetic library * * NOTE WELL: the content of this header file is NOT part of the "public" * API for the MPI library, and may change at any time. * Application programs that use libmpi should NOT include this header file. * * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the MPI Arbitrary Precision Integer Arithmetic * library. * * The Initial Developer of the Original Code is Michael J. Fromberger. * Portions created by Michael J. Fromberger are * Copyright (C) 1998, 1999, 2000 Michael J. Fromberger. * All Rights Reserved. * * Contributor(s): * Netscape Communications Corporation * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the GPL. * * $Id: mpi-priv.h,v 1.11.2.1 2000/11/21 03:32:39 nelsonb%netscape.com Exp $ */#ifndef _MPI_PRIV_H_#define _MPI_PRIV_H_ 1#include "mpi.h"#include <stdlib.h>#include <string.h>#include <ctype.h>#if MP_DEBUG#include <stdio.h>#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}#else#define DIAG(T,V)#endif/* If we aren't using a wired-in logarithm table, we need to include the math library to get the log() function *//* {{{ s_logv_2[] - log table for 2 in various bases */#if MP_LOGTAB/* A table of the logs of 2 for various bases (the 0 and 1 entries of this table are meaningless and should not be referenced). This table is used to compute output lengths for the mp_toradix() function. Since a number n in radix r takes up about log_r(n) digits, we estimate the output size by taking the least integer greater than log_r(n), where: log_r(n) = log_2(n) * log_r(2) This table, therefore, is a table of log_r(2) for 2 <= r <= 36, which are the output bases supported. */extern const float s_logv_2[];#define LOG_V_2(R) s_logv_2[(R)]#else/* If MP_LOGTAB is not defined, use the math library to compute the logarithms on the fly. Otherwise, use the table. Pick which works best for your system. */#include <math.h>#define LOG_V_2(R) (log(2.0)/log(R))#endif /* if MP_LOGTAB *//* }}} *//* {{{ Digit arithmetic macros *//* When adding and multiplying digits, the results can be larger than can be contained in an mp_digit. Thus, an mp_word is used. These macros mask off the upper and lower digits of the mp_word (the mp_word may be more than 2 mp_digits wide, but we only concern ourselves with the low-order 2 mp_digits) */#define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)#define ACCUM(W) (mp_digit)(W)#define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))#define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))/* }}} *//* {{{ Comparison constants */#define MP_LT -1#define MP_EQ 0#define MP_GT 1/* }}} *//* {{{ private function declarations *//* If MP_MACRO is false, these will be defined as actual functions; otherwise, suitable macro definitions will be used. This works around the fact that ANSI C89 doesn't support an 'inline' keyword (although I hear C9x will ... about bloody time). At present, the macro definitions are identical to the function bodies, but they'll expand in place, instead of generating a function call. I chose these particular functions to be made into macros because some profiling showed they are called a lot on a typical workload, and yet they are primarily housekeeping. */#if MP_MACRO == 0 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ void s_mp_free(void *ptr); /* general free function */extern unsigned long mp_allocs;extern unsigned long mp_frees;extern unsigned long mp_copies;#else /* Even if these are defined as macros, we need to respect the settings of the MP_MEMSET and MP_MEMCPY configuration options... */ #if MP_MEMSET == 0 #define s_mp_setz(dp, count) \ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} #else #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) #endif /* MP_MEMSET */ #if MP_MEMCPY == 0 #define s_mp_copy(sp, dp, count) \ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} #else #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) #endif /* MP_MEMCPY */ #define s_mp_alloc(nb, ni) calloc(nb, ni) #define s_mp_free(ptr) {if(ptr) free(ptr);}#endif /* MP_MACRO */mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */#if MP_MACRO == 0 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */#else #define s_mp_clamp(mp)\ { mp_size used = MP_USED(mp); \ while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ MP_USED(mp) = used; \ } #endif /* MP_MACRO */void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */void s_mp_div_2(mp_int *mp); /* divide by 2 in place */mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); /* normalize for division */mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); /* unsigned digit divide */mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); /* Barrett reduction */mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); /* a += b * RADIX^offset */mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */#if MP_SQUAREmp_err s_mp_sqr(mp_int *a); /* magnitude square */#else#define s_mp_sqr(a) s_mp_mul(a, a)#endifmp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */int s_mp_tovalue(char ch, int r); /* convert ch to value */char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */int s_mp_outlen(int bits, int r); /* output length in bytes */mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c);void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c);void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c);void s_mpv_sqr_add_prop(const mp_digit *a, mp_size a_len, mp_digit *sqrs);mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, mp_digit *quot, mp_digit *rem);/* c += a * b * (MP_RADIX ** offset); */#define s_mp_mul_d_add_offset(a, b, c, off) \(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)/* }}} */#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -