📄 r_keygen.c
字号:
#include "rsa_incl.h"#include "r_random.h"#include "nn.h"#include "prime.h"static int RSAFilter PROTO_LIST ((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));/* Generates an RSA key pair with a given length and public exponent. */int R_GeneratePEMKeys(publicKey, privateKey, protoKey, randomStruct)R_RSA_PUBLIC_KEY *publicKey; /* new RSA public key */R_RSA_PRIVATE_KEY *privateKey; /* new RSA private key */R_RSA_PROTO_KEY *protoKey; /* RSA prototype key */R_RANDOM_STRUCT *randomStruct; /* random structure */{/* my function *//* NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS], phiN_inc[MAX_NN_DIGITS],// temp[MAX_NN_DIGITS], pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS], qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; int status; unsigned int nDigits, pBits, pDigits, qBits; unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN]; if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS)) return(RE_MODULUS_LEN); nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; //32 pDigits = (nDigits + 1) / 2; //16 pBits = (protoKey->bits + 1) / 2; //512 qBits = protoKey->bits - pBits; //496 // NB: for 65537, this means that NN_DIGIT is at least 17 bits // in length. // NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits); // Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching // in steps of 2, until one satisfies gcd (p-1, e) = 1. NN_Assign2Exp(t, pBits-1, pDigits); //t=2^511 NN_Assign2Exp(u, pBits-2, pDigits); //u=2^510 NN_Add(t, t, u, pDigits); //t=3*2^510 NN_ASSIGN_DIGIT(v, 1, pDigits); //v=1 NN_Sub(v, t, v, pDigits); //v=3*2^510-1 NN_Add(u, u, v, pDigits); //u=2^512-1 NN_ASSIGN_DIGIT(v, 2, pDigits); //v=2 if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct)) return(status); //3*2^510<p<2^512-1 && (p-1)%2=0 // Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching // in steps of 2, until one satisfies gcd (q-1, e) = 1. NN_Assign2Exp(t, qBits-1, pDigits); NN_Assign2Exp(u, qBits-2, pDigits); NN_Add(t, t, u, pDigits); NN_ASSIGN_DIGIT(v, 1, pDigits); NN_Sub(v, t, v, pDigits); NN_Add(u, u, v, pDigits); NN_ASSIGN_DIGIT(v, 2, pDigits); if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct)) return(status); // Sort so that p > q. (p = q case is extremely unlikely. if(NN_Cmp(p, q, pDigits) < 0) { NN_Assign(t, p, pDigits); NN_Assign(p, q, pDigits); NN_Assign(q, t, pDigits); } // Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1), // dP = d mod p-1, dQ = d mod q-1. NN_Mult(n, p, q, pDigits); NN_ModInv(qInv, q, p, pDigits); NN_ASSIGN_DIGIT(t, 1, pDigits); NN_Sub(pMinus1, p, t, pDigits); NN_Sub(qMinus1, q, t, pDigits); NN_Mult(phiN, pMinus1, qMinus1, pDigits); NN_ASSIGN_DIGIT(t, 1, nDigits); NN_Add(phiN_inc, phiN, t, nDigits); // Generate random number . do { status = R_GenerateBytes(block, nDigits * NN_DIGIT_LEN, randomStruct); if(status) return(status); NN_Decode(e, nDigits, block, nDigits * NN_DIGIT_LEN); }while(!RSAFilter(phiN_inc, nDigits, e, nDigits)); NN_ModInv(d, e, phiN, nDigits); NN_Mod(dP, d, nDigits, pMinus1, pDigits); NN_Mod(dQ, d, nDigits, qMinus1, pDigits); publicKey->bits = privateKey->bits = protoKey->bits; NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits); NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, nDigits); R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN); R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN); NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits); NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits); NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits); NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits); NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits); NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits); // Clear sensitive information. R_memset((POINTER)d, 0, sizeof(d)); R_memset((POINTER)dP, 0, sizeof(dP)); R_memset((POINTER)dQ, 0, sizeof(dQ)); R_memset((POINTER)p, 0, sizeof(p)); R_memset((POINTER)phiN, 0, sizeof(phiN)); R_memset((POINTER)phiN_inc, 0, sizeof(phiN)); R_memset((POINTER)pMinus1, 0, sizeof(pMinus1)); R_memset((POINTER)q, 0, sizeof(q)); R_memset((POINTER)qInv, 0, sizeof(qInv)); R_memset((POINTER)qMinus1, 0, sizeof(qMinus1)); R_memset((POINTER)t, 0, sizeof(t)); return (0);*//* older function */////////////////////////////////////////////////////////// NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS], pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS], qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; int status; unsigned int nDigits, pBits, pDigits, qBits; if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS)) return(RE_MODULUS_LEN); nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; //32 pDigits = (nDigits + 1) / 2; //16 pBits = (protoKey->bits + 1) / 2; //512 qBits = protoKey->bits - pBits; //496 // NB: for 65537, this means that NN_DIGIT is at least 17 bits in length. NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits); // Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching // in steps of 2, until one satisfies gcd (p-1, e) = 1. NN_Assign2Exp(t, pBits-1, pDigits); //t=2^511 NN_Assign2Exp(u, pBits-2, pDigits); //u=2^510 NN_Add(t, t, u, pDigits); //t=3*2^510 NN_ASSIGN_DIGIT(v, 1, pDigits); //v=1 NN_Sub(v, t, v, pDigits); //v=3*2^510-1 NN_Add(u, u, v, pDigits); //u=2^512-1 NN_ASSIGN_DIGIT(v, 2, pDigits); //v=2 do { if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct)) return(status); //3*2^510<p<2^512-1 && (p-1)%2=0 }while(!RSAFilter(p, pDigits, e, 1)); // Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching // in steps of 2, until one satisfies gcd (q-1, e) = 1. NN_Assign2Exp(t, qBits-1, pDigits); NN_Assign2Exp(u, qBits-2, pDigits); NN_Add(t, t, u, pDigits); NN_ASSIGN_DIGIT(v, 1, pDigits); NN_Sub(v, t, v, pDigits); NN_Add(u, u, v, pDigits); NN_ASSIGN_DIGIT(v, 2, pDigits); do { if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct)) return(status); }while(!RSAFilter(q, pDigits, e, 1)); // Sort so that p > q. (p = q case is extremely unlikely. if(NN_Cmp(p, q, pDigits) < 0) { NN_Assign(t, p, pDigits); NN_Assign(p, q, pDigits); NN_Assign(q, t, pDigits); } // Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1), // dP = d mod p-1, dQ = d mod q-1. NN_Mult(n, p, q, pDigits); NN_ModInv(qInv, q, p, pDigits); NN_ASSIGN_DIGIT(t, 1, pDigits); NN_Sub(pMinus1, p, t, pDigits); NN_Sub(qMinus1, q, t, pDigits); NN_Mult(phiN, pMinus1, qMinus1, pDigits); NN_ModInv(d, e, phiN, nDigits); NN_Mod(dP, d, nDigits, pMinus1, pDigits); NN_Mod(dQ, d, nDigits, qMinus1, pDigits); NN_ModInv(d, e, phiN, nDigits); NN_Mod(dP, d, nDigits, pMinus1, pDigits); NN_Mod(dQ, d, nDigits, qMinus1, pDigits); publicKey->bits = privateKey->bits = protoKey->bits; NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits); NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1); R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN); R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN); NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits); NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits); NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits); NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits); NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits); NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits); // Clear sensitive information. R_memset((POINTER)d, 0, sizeof(d)); R_memset((POINTER)dP, 0, sizeof(dP)); R_memset((POINTER)dQ, 0, sizeof(dQ)); R_memset((POINTER)p, 0, sizeof(p)); R_memset((POINTER)phiN, 0, sizeof(phiN)); R_memset((POINTER)pMinus1, 0, sizeof(pMinus1)); R_memset((POINTER)q, 0, sizeof(q)); R_memset((POINTER)qInv, 0, sizeof(qInv)); R_memset((POINTER)qMinus1, 0, sizeof(qMinus1)); R_memset((POINTER)t, 0, sizeof(t)); return (0);/* all set zero*//* NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], phiN_inc[MAX_NN_DIGITS],temp[MAX_NN_DIGITS], e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS], pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS], qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; int status; unsigned int nDigits, pBits, pDigits, qBits; unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN]; R_memset((POINTER)d, 0, sizeof(d)); R_memset((POINTER)dP, 0, sizeof(dP)); R_memset((POINTER)dQ, 0, sizeof(dQ)); R_memset((POINTER)p, 0, sizeof(p)); R_memset((POINTER)phiN, 0, sizeof(phiN)); R_memset((POINTER)pMinus1, 0, sizeof(pMinus1)); R_memset((POINTER)q, 0, sizeof(q)); R_memset((POINTER)qInv, 0, sizeof(qInv)); R_memset((POINTER)qMinus1, 0, sizeof(qMinus1)); R_memset((POINTER)t, 0, sizeof(t)); publicKey->bits = privateKey->bits = protoKey->bits; NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits); NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1); R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN); R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN); NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits); NN_Endom strucncode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits); NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits); NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits); NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits); NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits); // Clear sensitive information. R_memset((POINTER)d, 0, sizeof(d)); R_memset((POINTER)dP, 0, sizeof(dP)); R_memset((POINTER)dQ, 0, sizeof(dQ)); R_memset((POINTER)p, 0, sizeof(p)); R_memset((POINTER)phiN, 0, sizeof(phiN)); R_memset((POINTER)pMinus1, 0, sizeof(pMinus1)); R_memset((POINTER)q, 0, sizeof(q)); R_memset((POINTER)qInv, 0, sizeof(qInv)); R_memset((POINTER)qMinus1, 0, sizeof(qMinus1)); R_memset((POINTER)t, 0, sizeof(t)); return (0);*/}/* Returns nonzero iff GCD (a-1, b) = 1. Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */static int RSAFilter(a, aDigits, b, bDigits)NN_DIGIT *a, *b;unsigned int aDigits, bDigits;{ int status = 0; NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS]; NN_DIGIT u[MAX_NN_DIGITS]; NN_ASSIGN_DIGIT(t, 1, aDigits); NN_Sub(aMinus1, a, t, aDigits); NN_Gcd(u, aMinus1, b, aDigits); status = NN_EQUAL(t, u, aDigits); R_memset((POINTER)aMinus1, 0, sizeof(aMinus1)); return(status);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -