⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r_keygen.c

📁 des和rsa加密算法程序
💻 C
字号:
#include "rsa_incl.h"#include "r_random.h"#include "nn.h"#include "prime.h"static int RSAFilter PROTO_LIST	((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));/* Generates an RSA key pair with a given length and public exponent. */int R_GeneratePEMKeys(publicKey, privateKey, protoKey, randomStruct)R_RSA_PUBLIC_KEY *publicKey;    /* new RSA public key */R_RSA_PRIVATE_KEY *privateKey;  /* new RSA private key */R_RSA_PROTO_KEY *protoKey;      /* RSA prototype key */R_RANDOM_STRUCT *randomStruct;  /* random structure */{/*  my function *//*	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],		phiN_inc[MAX_NN_DIGITS],//		temp[MAX_NN_DIGITS],		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],		v[MAX_NN_DIGITS];	int status;	unsigned int nDigits, pBits, pDigits, qBits;    unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];	if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))		return(RE_MODULUS_LEN);	nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;		//32	pDigits = (nDigits + 1) / 2;	//16	pBits = (protoKey->bits + 1) / 2;	//512	qBits = protoKey->bits - pBits;		//496	// NB: for 65537, this means that NN_DIGIT is at least 17 bits	//	 in length. //	NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);	// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching	//	 in steps of 2, until one satisfies gcd (p-1, e) = 1. 	NN_Assign2Exp(t, pBits-1, pDigits);		//t=2^511	NN_Assign2Exp(u, pBits-2, pDigits);		//u=2^510	NN_Add(t, t, u, pDigits);				//t=3*2^510	NN_ASSIGN_DIGIT(v, 1, pDigits);			//v=1	NN_Sub(v, t, v, pDigits);				//v=3*2^510-1	NN_Add(u, u, v, pDigits);				//u=2^512-1	NN_ASSIGN_DIGIT(v, 2, pDigits);			//v=2	if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))		return(status);		//3*2^510<p<2^512-1 && (p-1)%2=0	// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching	//	 in steps of 2, until one satisfies gcd (q-1, e) = 1. 	NN_Assign2Exp(t, qBits-1, pDigits);	NN_Assign2Exp(u, qBits-2, pDigits);	NN_Add(t, t, u, pDigits);	NN_ASSIGN_DIGIT(v, 1, pDigits);	NN_Sub(v, t, v, pDigits);	NN_Add(u, u, v, pDigits);	NN_ASSIGN_DIGIT(v, 2, pDigits);	if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))		return(status);	// Sort so that p > q. (p = q case is extremely unlikely. 	if(NN_Cmp(p, q, pDigits) < 0) {		NN_Assign(t, p, pDigits);		NN_Assign(p, q, pDigits);		NN_Assign(q, t, pDigits);	}	// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),	//	 dP = d mod p-1, dQ = d mod q-1. 	NN_Mult(n, p, q, pDigits);	NN_ModInv(qInv, q, p, pDigits);	NN_ASSIGN_DIGIT(t, 1, pDigits);	NN_Sub(pMinus1, p, t, pDigits);	NN_Sub(qMinus1, q, t, pDigits);	NN_Mult(phiN, pMinus1, qMinus1, pDigits);	NN_ASSIGN_DIGIT(t, 1, nDigits);	NN_Add(phiN_inc, phiN, t, nDigits);    // Generate random number . 	do {	    status = R_GenerateBytes(block, nDigits * NN_DIGIT_LEN, randomStruct);	    if(status)		    return(status);	    NN_Decode(e, nDigits, block, nDigits * NN_DIGIT_LEN);	}while(!RSAFilter(phiN_inc, nDigits, e, nDigits));	NN_ModInv(d, e, phiN, nDigits);	NN_Mod(dP, d, nDigits, pMinus1, pDigits);	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);	publicKey->bits = privateKey->bits = protoKey->bits;	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, nDigits);	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);	NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);	// Clear sensitive information. 	R_memset((POINTER)d, 0, sizeof(d));	R_memset((POINTER)dP, 0, sizeof(dP));	R_memset((POINTER)dQ, 0, sizeof(dQ));	R_memset((POINTER)p, 0, sizeof(p));	R_memset((POINTER)phiN, 0, sizeof(phiN));	R_memset((POINTER)phiN_inc, 0, sizeof(phiN));	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));	R_memset((POINTER)q, 0, sizeof(q));	R_memset((POINTER)qInv, 0, sizeof(qInv));	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));	R_memset((POINTER)t, 0, sizeof(t));	return (0);*//* older function *///////////////////////////////////////////////////////////	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],		v[MAX_NN_DIGITS];	int status;	unsigned int nDigits, pBits, pDigits, qBits;	if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))		return(RE_MODULUS_LEN);	nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;		//32	pDigits = (nDigits + 1) / 2;	//16	pBits = (protoKey->bits + 1) / 2;	//512	qBits = protoKey->bits - pBits;		//496	// NB: for 65537, this means that NN_DIGIT is at least 17 bits in length. 	NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);	// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching	//	 in steps of 2, until one satisfies gcd (p-1, e) = 1. 	NN_Assign2Exp(t, pBits-1, pDigits);		//t=2^511	NN_Assign2Exp(u, pBits-2, pDigits);		//u=2^510	NN_Add(t, t, u, pDigits);				//t=3*2^510	NN_ASSIGN_DIGIT(v, 1, pDigits);			//v=1	NN_Sub(v, t, v, pDigits);				//v=3*2^510-1	NN_Add(u, u, v, pDigits);				//u=2^512-1	NN_ASSIGN_DIGIT(v, 2, pDigits);			//v=2	do {		if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))			return(status);		//3*2^510<p<2^512-1 && (p-1)%2=0	}while(!RSAFilter(p, pDigits, e, 1));	// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching	//	 in steps of 2, until one satisfies gcd (q-1, e) = 1. 	NN_Assign2Exp(t, qBits-1, pDigits);	NN_Assign2Exp(u, qBits-2, pDigits);	NN_Add(t, t, u, pDigits);	NN_ASSIGN_DIGIT(v, 1, pDigits);	NN_Sub(v, t, v, pDigits);	NN_Add(u, u, v, pDigits);	NN_ASSIGN_DIGIT(v, 2, pDigits);	do {		if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))			return(status);	}while(!RSAFilter(q, pDigits, e, 1));	// Sort so that p > q. (p = q case is extremely unlikely. 	if(NN_Cmp(p, q, pDigits) < 0) {		NN_Assign(t, p, pDigits);		NN_Assign(p, q, pDigits);		NN_Assign(q, t, pDigits);	}	// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),	//	 dP = d mod p-1, dQ = d mod q-1. 	NN_Mult(n, p, q, pDigits);	NN_ModInv(qInv, q, p, pDigits);	NN_ASSIGN_DIGIT(t, 1, pDigits);	NN_Sub(pMinus1, p, t, pDigits);	NN_Sub(qMinus1, q, t, pDigits);	NN_Mult(phiN, pMinus1, qMinus1, pDigits);	NN_ModInv(d, e, phiN, nDigits);	NN_Mod(dP, d, nDigits, pMinus1, pDigits);	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);	NN_ModInv(d, e, phiN, nDigits);	NN_Mod(dP, d, nDigits, pMinus1, pDigits);	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);	publicKey->bits = privateKey->bits = protoKey->bits;	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);	NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);	// Clear sensitive information. 	R_memset((POINTER)d, 0, sizeof(d));	R_memset((POINTER)dP, 0, sizeof(dP));	R_memset((POINTER)dQ, 0, sizeof(dQ));	R_memset((POINTER)p, 0, sizeof(p));	R_memset((POINTER)phiN, 0, sizeof(phiN));	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));	R_memset((POINTER)q, 0, sizeof(q));	R_memset((POINTER)qInv, 0, sizeof(qInv));	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));	R_memset((POINTER)t, 0, sizeof(t));	return (0);/* all set zero*//*	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],		phiN_inc[MAX_NN_DIGITS],temp[MAX_NN_DIGITS],		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],		v[MAX_NN_DIGITS];	int status;	unsigned int nDigits, pBits, pDigits, qBits;    unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];	R_memset((POINTER)d, 0, sizeof(d));	R_memset((POINTER)dP, 0, sizeof(dP));	R_memset((POINTER)dQ, 0, sizeof(dQ));	R_memset((POINTER)p, 0, sizeof(p));	R_memset((POINTER)phiN, 0, sizeof(phiN));	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));	R_memset((POINTER)q, 0, sizeof(q));	R_memset((POINTER)qInv, 0, sizeof(qInv));	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));	R_memset((POINTER)t, 0, sizeof(t));	publicKey->bits = privateKey->bits = protoKey->bits;	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);	NN_Endom strucncode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);	// Clear sensitive information. 	R_memset((POINTER)d, 0, sizeof(d));	R_memset((POINTER)dP, 0, sizeof(dP));	R_memset((POINTER)dQ, 0, sizeof(dQ));	R_memset((POINTER)p, 0, sizeof(p));	R_memset((POINTER)phiN, 0, sizeof(phiN));	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));	R_memset((POINTER)q, 0, sizeof(q));	R_memset((POINTER)qInv, 0, sizeof(qInv));	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));	R_memset((POINTER)t, 0, sizeof(t));	return (0);*/}/* Returns nonzero iff GCD (a-1, b) = 1.	 Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */static int RSAFilter(a, aDigits, b, bDigits)NN_DIGIT *a, *b;unsigned int aDigits, bDigits;{	int status = 0;	NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS];	NN_DIGIT u[MAX_NN_DIGITS];	NN_ASSIGN_DIGIT(t, 1, aDigits);	NN_Sub(aMinus1, a, t, aDigits);	NN_Gcd(u, aMinus1, b, aDigits);	status = NN_EQUAL(t, u, aDigits);	R_memset((POINTER)aMinus1, 0, sizeof(aMinus1));	return(status);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -