⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exc_lbc.c

📁 G.723加解码程序
💻 C
📖 第 1 页 / 共 5 页
字号:
    Tmp0 = Olp ;    for ( i = 0 ; i < SubFrLen ; i ++ ) {        Tmp[i] = Src[i] ;        Dst[i] = Src[i] ;    }    while ( Tmp0 < SubFrLen ) {        for ( i = (int) Tmp0 ; i < SubFrLen ; i ++ ) {            Tmp1 = add( Dst[i], Tmp[i-(int)Tmp0] ) ;            Dst[i] = Tmp1 ;        }        Tmp0 = add( Tmp0, Olp ) ;    }    return;}/***** Function:        Find_Best()**** Description:     Fixed codebook search for the high rate encoder.**                  It performs the quantization of the residual signal.**                  The excitation made of Np positive or negative pulses**                  multiplied by a gain and whose positions on the grid are**                  either all odd or all even, should approximate as best as**                  possible the residual signal (perceptual criterion).**** Links to text:   Section 2.15**** Arguments:****  BESTDEF *Best   Parameters of the best excitation model**  Word16 *Tv      Target vector**  Word16 *ImpResp Impulse response of the combined filter**  Word16 Np       Number of pulses (6 for even subframes; 5 for odd subframes)**  Word16 Olp      Closed-loop pitch lag of subframe 0 (for subframes 0 & 1)**                  Closed-loop pitch lag of subframe 2 (for subframes 2 & 3)**** Outputs:****  BESTDEF *Best**** Return value:    None***/void  Find_Best( BESTDEF *Best, Word16 *Tv, Word16 *ImpResp, Word16 Np,Word16 Olp ){    int   i,j,k,l  ;    BESTDEF  Temp  ;    Word16   Exp   ;    Word16   MaxAmpId ;    Word16   MaxAmp   ;    Word32   Acc0,Acc1,Acc2 ;    Word16   Imr[SubFrLen]  ;    Word16   OccPos[SubFrLen] ;    Word16   ImrCorr[SubFrLen] ;    Word32   ErrBlk[SubFrLen] ;    Word32   WrkBlk[SubFrLen] ;    /* Update Impulse response */    if ( Olp < (Word16) (SubFrLen-2) ) {        Temp.UseTrn = (Word16) 1 ;        Gen_Trn( Imr, ImpResp, Olp ) ;    }    else {        Temp.UseTrn = (Word16) 0 ;        for ( i = 0 ; i < SubFrLen ; i ++ )            Imr[i] = ImpResp[i] ;    }    /* Scale Imr to avoid overflow */    for ( i = 0 ; i < SubFrLen ; i ++ )        OccPos[i] = shr( Imr[i], (Word16) 1 ) ;    /* Compute Imr AutoCorr function */    Acc0 = (Word32) 0 ;    for ( i = 0 ; i < SubFrLen ; i ++ )        Acc0 = L_mac( Acc0, OccPos[i], OccPos[i] ) ;    Exp = norm_l( Acc0 ) ;    Acc0 = L_shl( Acc0, Exp ) ;    ImrCorr[0] = round( Acc0 ) ;    /* Compute all the other */    for ( i = 1 ; i < SubFrLen ; i ++ ) {        Acc0 = (Word32) 0 ;        for ( j = i ; j < SubFrLen ; j ++ )            Acc0 = L_mac( Acc0, OccPos[j], OccPos[j-i] ) ;        Acc0 = L_shl( Acc0, Exp ) ;        ImrCorr[i] = round( Acc0 ) ;    }    /* Cross correlation with the signal */    Exp = sub( Exp, 4 ) ;    for ( i = 0 ; i < SubFrLen ; i ++ ) {        Acc0 = (Word32) 0 ;        for ( j = i ; j < SubFrLen ; j ++ )            Acc0 = L_mac( Acc0, Tv[j], Imr[j-i] ) ;        ErrBlk[i] = L_shl( Acc0, Exp ) ;    }    /* Search for the best sequence */    for ( k = 0 ; k < Sgrid ; k ++ ) {        Temp.GridId = (Word16) k ;        /* Find maximum amplitude */        Acc1 = (Word32) 0 ;        for ( i = k ; i < SubFrLen ; i += Sgrid ) {            Acc0 = L_abs( ErrBlk[i] ) ;            if ( Acc0 >= Acc1 ) {                Acc1 = Acc0 ;                Temp.Ploc[0] = (Word16) i ;            }        }        /* Quantize the maximum amplitude */        Acc2 = Acc1 ;        Acc1 = (Word32) 0x40000000L ;        MaxAmpId = (Word16) (NumOfGainLev - MlqSteps) ;        for ( i = MaxAmpId ; i >= MlqSteps ; i -- ) {            Acc0 = L_mult( FcbkGainTable[i], ImrCorr[0] ) ;            Acc0 = L_sub( Acc0, Acc2 ) ;            Acc0 = L_abs( Acc0 ) ;            if ( Acc0 < Acc1 ) {                Acc1 = Acc0 ;                MaxAmpId = (Word16) i ;            }        }        MaxAmpId -- ;        for ( i = 1 ; i <=2*MlqSteps ; i ++ ) {            for ( j = k ; j < SubFrLen ; j += Sgrid ) {                WrkBlk[j] = ErrBlk[j] ;                OccPos[j] = (Word16) 0 ;            }            Temp.MampId = MaxAmpId - (Word16) MlqSteps + (Word16) i ;            MaxAmp = FcbkGainTable[Temp.MampId] ;            if ( WrkBlk[Temp.Ploc[0]] >= (Word32) 0 )                Temp.Pamp[0] = MaxAmp ;            else                Temp.Pamp[0] = negate(MaxAmp) ;            OccPos[Temp.Ploc[0]] = (Word16) 1 ;            for ( j = 1 ; j < Np ; j ++ ) {                Acc1 = (Word32) 0xc0000000L ;                for ( l = k ; l < SubFrLen ; l += Sgrid ) {                    if ( OccPos[l] != (Word16) 0 )                        continue ;                    Acc0 = WrkBlk[l] ;                    Acc0 = L_msu( Acc0, Temp.Pamp[j-1],                            ImrCorr[abs_s((Word16)(l-Temp.Ploc[j-1]))] ) ;                    WrkBlk[l] = Acc0 ;                    Acc0 = L_abs( Acc0 ) ;                    if ( Acc0 > Acc1 ) {                        Acc1 = Acc0 ;                        Temp.Ploc[j] = (Word16) l ;                    }                }                if ( WrkBlk[Temp.Ploc[j]] >= (Word32) 0 )                    Temp.Pamp[j] = MaxAmp ;                else                    Temp.Pamp[j] = negate(MaxAmp) ;                OccPos[Temp.Ploc[j]] = (Word16) 1 ;            }            /* Compute error vector */            for ( j = 0 ; j < SubFrLen ; j ++ )                OccPos[j] = (Word16) 0 ;            for ( j = 0 ; j < Np ; j ++ )                OccPos[Temp.Ploc[j]] = Temp.Pamp[j] ;            for ( l = SubFrLen-1 ; l >= 0 ; l -- ) {                Acc0 = (Word32) 0 ;                for ( j = 0 ; j <= l ; j ++ )                    Acc0 = L_mac( Acc0, OccPos[j], Imr[l-j] ) ;                Acc0 = L_shl( Acc0, (Word16) 2 ) ;                OccPos[l] = extract_h( Acc0 ) ;            }            /* Evaluate error */            Acc1 = (Word32) 0 ;            for ( j = 0 ; j < SubFrLen ; j ++ ) {                Acc1 = L_mac( Acc1, Tv[j], OccPos[j] ) ;                Acc0 = L_mult( OccPos[j], OccPos[j] ) ;                Acc1 = L_sub( Acc1, L_shr( Acc0, (Word16) 1 ) ) ;            }            if ( Acc1 > (*Best).MaxErr ) {                (*Best).MaxErr = Acc1 ;                (*Best).GridId = Temp.GridId ;                (*Best).MampId = Temp.MampId ;                (*Best).UseTrn = Temp.UseTrn ;                for ( j = 0 ; j < Np ; j ++ ) {                    (*Best).Pamp[j] = Temp.Pamp[j] ;                    (*Best).Ploc[j] = Temp.Ploc[j] ;                }            }        }    }    return;}/***** Function:        Fcbk_Pack()**** Description:     Encoding of the pulse positions and gains for the high**                  rate case.**                  Combinatorial encoding is used to transmit the optimal**                  combination of pulse locations.**** Links to text:   Section 2.15**** Arguments:****  Word16 *Dpnt    Excitation vector**  SFSDEF *Sfs     Encoded parameters of the excitation model**  BESTDEF *Best   Parameters of the best excitation model**  Word16 Np       Number of pulses (6 for even subframes; 5 for odd subframes)**** Outputs:****  SFSDEF *Sfs     Encoded parameters of the excitation model**** Return value:    None***/void  Fcbk_Pack( Word16 *Dpnt, SFSDEF *Sfs, BESTDEF *Best, Word16 Np ){    int   i,j   ;    /* Code the amplitudes and positions */    j = MaxPulseNum - (int) Np ;    (*Sfs).Pamp = (Word16) 0 ;    (*Sfs).Ppos = (Word32) 0 ;    for ( i = 0 ; i < SubFrLen/Sgrid ; i ++ ) {        if ( Dpnt[(int)(*Best).GridId + Sgrid*i] == (Word16) 0 )            (*Sfs).Ppos = L_add( (*Sfs).Ppos, CombinatorialTable[j][i] ) ;        else {            (*Sfs).Pamp = shl( (*Sfs).Pamp, (Word16) 1 ) ;            if ( Dpnt[(int)(*Best).GridId + Sgrid*i] < (Word16) 0 )                (*Sfs).Pamp = add( (*Sfs).Pamp, (Word16) 1 ) ;            j ++ ;            /* Check for end */            if ( j == MaxPulseNum )                break ;        }    }    (*Sfs).Mamp = (*Best).MampId ;    (*Sfs).Grid = (*Best).GridId ;    (*Sfs).Tran = (*Best).UseTrn ;    return;}/***** Function:        Fcbk_Unpk()**** Description:     Decoding of the fixed codebook excitation for both rates.**                  Gains, pulse positions, grid position (odd or even), signs**                  are decoded and used to reconstruct the excitation.**** Links to text:   Section 2.17 & 3.5**** Arguments:****  Word16 *Tv      Decoded excitation vector**  SFSDEF Sfs      Encoded parameters of the excitation (for one subframe)**  Word16 Olp      Closed loop adaptive pitch lag**  Word16 Sfc      Subframe index**** Outputs:****  Word16 *Tv      Decoded excitation vector**** Return value:    None***/void  Fcbk_Unpk( Word16 *Tv, SFSDEF Sfs, Word16 Olp, Word16 Sfc ){    int   i,j   ;    Word32   Acc0  ;    Word16   Np ;    Word16 Tv_tmp[SubFrLen+4];    Word16 acelp_gain, acelp_sign, acelp_shift, acelp_pos;    Word16 offset, ipos, T0_acelp, gain_T0;    switch(WrkRate)  {        case Rate63: {            Np = Nb_puls[(int)Sfc] ;            for ( i = 0 ; i < SubFrLen ; i ++ )                Tv[i] = (Word16) 0 ;            if ( Sfs.Ppos >= MaxPosTable[Sfc] )                return ;            /* Decode the amplitudes and positions */            j = MaxPulseNum - (int) Np ;            Acc0 = Sfs.Ppos ;            for ( i = 0 ; i < SubFrLen/Sgrid ; i ++ )  {                Acc0 = L_sub( Acc0, CombinatorialTable[j][i] ) ;                if ( Acc0 < (Word32) 0 ) {                    Acc0 = L_add( Acc0, CombinatorialTable[j][i] ) ;                    j ++ ;                    if ( (Sfs.Pamp & (1 << (MaxPulseNum-j) )) != (Word16) 0 )                        Tv[(int)Sfs.Grid + Sgrid*i] = -FcbkGainTable[Sfs.Mamp] ;                    else                        Tv[(int)Sfs.Grid + Sgrid*i] =  FcbkGainTable[Sfs.Mamp] ;                    if ( j == MaxPulseNum )                        break ;                }            }            if ( Sfs.Tran == (Word16) 1 )                Gen_Trn( Tv, Tv, Olp ) ;            break;        }        case Rate53: {            for ( i = 0 ; i < SubFrLen+4 ; i ++ )                Tv_tmp[i] = (Word16) 0 ;            /* decoding gain */            acelp_gain = FcbkGainTable[Sfs.Mamp];            /* decoding grid */            acelp_shift = Sfs.Grid;            /* decoding Sign */            acelp_sign = Sfs.Pamp;            /* decoding Pos */            acelp_pos = (short) Sfs.Ppos;            offset  = 0;            for(i=0; i<4; i++) {                ipos = (acelp_pos & (Word16)0x0007) ;                ipos = shl(ipos,3) + acelp_shift + offset;                if( (acelp_sign & 1 )== 1) {                    Tv_tmp[ipos] = acelp_gain;                }                else {                    Tv_tmp[ipos] = -acelp_gain;                }                offset = add(offset,2);                acelp_pos = shr(acelp_pos, 3);                acelp_sign = shr(acelp_sign,1);            }            for (i = 0; i < SubFrLen; i++) Tv[i] = Tv_tmp[i];            T0_acelp = search_T0( (Word16) (Olp-1+Sfs.AcLg), Sfs.AcGn,                                                            &gain_T0);            if(T0_acelp <SubFrLen-2) {                /* code[i] += 0.8 * code[i-Olp] */                for (i = T0_acelp ; i < SubFrLen; i++)                    Tv[i] = add(Tv[i], mult(Tv[i-T0_acelp ], gain_T0));            }            break;        }    }    return;}/***** Function:        Find_Acbk()**** Description:     Computation of adaptive codebook contribution in**                  closed-loop around the open-loop pitch lag (subframes 0 & 2)**                  around the previous subframe closed-loop pitch lag**                  (subframes 1 & 3).  For subframes 0 & 2, the pitch lag is**                  encoded whereas for subframes 1 & 3, only the difference**                  with the previous value is encoded (-1, 0, +1 or +2).**                  The pitch predictor gains are quantized using one of the two**                  codebooks (85 entries or 170 entries) depending on the**                  rate and on the pitch lag value.**                  Finally, the contribution of the pitch predictor is decoded**                  and subtracted to obtain the residual signal.**** Links to text:   Section 2.14**** Arguments:****  Word16 *Tv      Target vector**  Word16 *ImpResp Impulse response of the combined filter**  Word16 *PrevExc Previous excitation vector**  LINEDEF *Line   Contains pitch related parameters (open/closed loop lag, gain)**  Word16 Sfc      Subframe index**** Outputs:****  Word16 *Tv     Residual vector**  LINEDEF *Line  Contains pitch related parameters (closed loop lag, gain)**** Return value:    None***/void  Find_Acbk( Word16 *Tv, Word16 *ImpResp, Word16 *PrevExc, LINEDEF*Line, Word16 Sfc ){    int   i,j,k,l  ;    Word32   Acc0,Acc1 ;    Word16   RezBuf[SubFrLen+ClPitchOrd-1] ;    Word16   FltBuf[ClPitchOrd][SubFrLen] ;    Word32   CorBuf[4*(2*ClPitchOrd + ClPitchOrd*(ClPitchOrd-1)/2)] ;    Word32   *lPnt ;    Word16   CorVct[4*(2*ClPitchOrd + ClPitchOrd*(ClPitchOrd-1)/2)] ;    Word16   *sPnt ;    Word16   Olp ;    Word16   Lid ;    Word16   Gid ;    Word16   Hb  ;    Word16   Exp ;    Word16   Bound[2] ;    Word16   Lag1, Lag2;    Word16   off_filt;    /* Init constants */    Olp = (*Line).Olp[shr(Sfc, (Word16) 1)] ;    Lid = (Word16) Pstep ;    Gid = (Word16) 0 ;    Hb  = (Word16) 3 + (Sfc & (Word16) 1 ) ;    /* For even frames only */    if ( (Sfc & (Word16)1) == (Word16) 0 ) {        if ( Olp == (Word16) PitchMin )            Olp = add( Olp, (Word16) 1 ) ;        if ( Olp > (Word16) (PitchMax-5) )            Olp = (Word16)(PitchMax-5) ;    }    lPnt = CorBuf ;    for ( k = 0 ; k < (int) Hb ; k ++ ) {        /* Get residual from the excitation buffer */        Get_Rez( RezBuf, PrevExc, (Word16)(Olp-(Word16)Pstep+k) ) ;        /* Filter the last one using the impulse response */        for ( i = 0 ; i < SubFrLen ; i ++ ) {            Acc0 = (Word32) 0 ;            for ( j = 0 ; j <= i ; j ++ )                Acc0 = L_mac( Acc0, RezBuf[ClPitchOrd-1+j], ImpResp[i-j] ) ;            FltBuf[ClPitchOrd-1][i] = round( Acc0 ) ;        }        /* Update all the others */        for ( i = ClPitchOrd-2 ; i >= 0 ; i -- ) {            FltBuf[i][0] = mult_r( RezBuf[i], (Word16) 0x2000 ) ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -