📄 ecp.cpp
字号:
// ecp.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "ecp.h"
#include "asn.h"
#include "nbtheory.h"
#include "algebra.cpp"
#include "eprecomp.cpp"
NAMESPACE_BEGIN(CryptoPP)
ANONYMOUS_NAMESPACE_BEGIN
static inline ECP::Point ToMontgomery(const MontgomeryRepresentation &mr, const ECP::Point &P)
{
return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y));
}
static inline ECP::Point FromMontgomery(const MontgomeryRepresentation &mr, const ECP::Point &P)
{
return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y));
}
NAMESPACE_END
ECP::Point ECP::DecodePoint(const byte *encodedPoint) const
{
if (encodedPoint[0] != 4) // TODO: handle compressed points
return Point();
else
{
unsigned int len = field.MaxElementByteLength();
return Point(FieldElement(encodedPoint+1, len), FieldElement(encodedPoint+1+len, len));
}
}
void ECP::EncodePoint(byte *encodedPoint, const Point &P) const
{
if (P.identity)
memset(encodedPoint, 0, EncodedPointSize());
else
{
encodedPoint[0] = 4; // uncompressed
unsigned int len = field.MaxElementByteLength();
P.x.Encode(encodedPoint+1, len);
P.y.Encode(encodedPoint+1+len, len);
}
}
bool ECP::ValidateParameters(RandomNumberGenerator &rng) const
{
Integer p = FieldSize();
return p.IsOdd() && VerifyPrime(rng, p)
&& !a.IsNegative() && a<p && !b.IsNegative() && b<p
&& ((4*a*a*a+27*b*b)%p).IsPositive();
}
bool ECP::VerifyPoint(const Point &P) const
{
const FieldElement &x = P.x, &y = P.y;
Integer p = FieldSize();
return P.identity ||
(!x.IsNegative() && x<p && !y.IsNegative() && y<p
&& !(((x*x+a)*x+b-y*y)%p));
}
bool ECP::Equal(const Point &P, const Point &Q) const
{
if (P.identity && Q.identity)
return true;
if (P.identity && !Q.identity)
return false;
if (!P.identity && Q.identity)
return false;
return (field.Equal(P.x,Q.x) && field.Equal(P.y,Q.y));
}
const ECP::Point& ECP::Inverse(const Point &P) const
{
if (P.identity)
return P;
else
{
R.identity = false;
R.x = P.x;
R.y = field.Inverse(P.y);
return R;
}
}
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
{
if (P.identity) return Q;
if (Q.identity) return P;
if (field.Equal(P.x, Q.x))
return field.Equal(P.y, Q.y) ? Double(P) : Zero();
FieldElement t = field.Subtract(Q.y, P.y);
t = field.Divide(t, field.Subtract(Q.x, P.x));
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x);
R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
R.x.swap(x);
R.identity = false;
return R;
}
const ECP::Point& ECP::Double(const Point &P) const
{
if (P.identity || P.y==field.Zero()) return Zero();
FieldElement t = field.Square(P.x);
t = field.Add(field.Add(field.Double(t), t), a);
t = field.Divide(t, field.Double(P.y));
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
R.x.swap(x);
R.identity = false;
return R;
}
template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end)
{
unsigned int n = end-begin;
if (n == 1)
*begin = ring.MultiplicativeInverse(*begin);
else if (n > 1)
{
std::vector<T> vec((n+1)/2);
unsigned int i;
Iterator it;
for (i=0, it=begin; i<n/2; i++, it+=2)
vec[i] = ring.Multiply(*it, *(it+1));
if (n%2 == 1)
vec[n/2] = *it;
ParallelInvert(ring, vec.begin(), vec.end());
for (i=0, it=begin; i<n/2; i++, it+=2)
{
if (!vec[i])
{
*it = ring.MultiplicativeInverse(*it);
*(it+1) = ring.MultiplicativeInverse(*(it+1));
}
else
{
std::swap(*it, *(it+1));
*it = ring.Multiply(*it, vec[i]);
*(it+1) = ring.Multiply(*(it+1), vec[i]);
}
}
if (n%2 == 1)
*it = vec[n/2];
}
}
struct ProjectivePoint
{
ProjectivePoint() {}
ProjectivePoint(const Integer &x, const Integer &y, const Integer &z)
: x(x), y(y), z(z) {}
Integer x,y,z;
};
class ProjectiveDoubling
{
public:
ProjectiveDoubling(const ModularArithmetic &mr, const Integer &a, const Integer &b, const ECPPoint &Q)
: mr(mr), firstDoubling(true), negated(false)
{
if (Q.identity)
{
sixteenY4 = P.x = P.y = mr.One();
aZ4 = P.z = mr.Zero();
}
else
{
P.x = Q.x;
P.y = Q.y;
sixteenY4 = P.z = mr.One();
aZ4 = a;
}
}
const ProjectivePoint & DoDoublings(unsigned int doublingCount, bool negate)
{
for (unsigned int i=0; i<doublingCount; i++)
{
twoY = mr.Double(P.y);
P.z = mr.Multiply(P.z, twoY);
fourY2 = mr.Square(twoY);
S = mr.Multiply(fourY2, P.x);
aZ4 = mr.Multiply(aZ4, sixteenY4);
M = mr.Square(P.x);
M = mr.Add(mr.Add(mr.Double(M), M), aZ4);
P.x = mr.Square(M);
mr.Reduce(P.x, S);
mr.Reduce(P.x, S);
mr.Reduce(S, P.x);
P.y = mr.Multiply(M, S);
sixteenY4 = mr.Square(fourY2);
mr.Reduce(P.y, mr.Half(sixteenY4));
}
if (negate != negated)
{
negated = !negated;
P.y = mr.Inverse(P.y);
}
return P;
}
const ModularArithmetic &mr;
ProjectivePoint P;
bool firstDoubling, negated;
Integer sixteenY4, aZ4, twoY, fourY2, S, M;
};
struct ZIterator
{
ZIterator() {}
ZIterator(std::vector<ProjectivePoint>::iterator it) : it(it) {}
Integer& operator*() {return it->z;}
int operator-(ZIterator it2) {return it-it2.it;}
ZIterator operator+(int i) {return ZIterator(it+i);}
ZIterator& operator+=(int i) {it+=i; return *this;}
std::vector<ProjectivePoint>::iterator it;
};
ECP::Point ECP::ScalarMultiply(const Point &P, const Integer &k) const
{
const int windowSize = 5;
const word windowModulus = 1 << windowSize;
if (k.BitCount() <= windowSize)
return AbstractGroup<ECPPoint>::ScalarMultiply(P, k);
ProjectiveDoubling rd(field, a, b, P);
std::vector<word> exponents;
std::vector<ProjectivePoint> bases;
Integer workExponent = k;
int futureDoublings = 0, skipCount;
while (!!workExponent)
{
for (skipCount=0; ; skipCount++)
if (workExponent.GetBit(skipCount))
break;
workExponent >>= skipCount;
word subExponent = workExponent % windowModulus;
workExponent >>= windowSize;
if (workExponent.IsOdd())
{
subExponent = windowModulus - subExponent;
++workExponent;
bases.push_back(rd.DoDoublings(futureDoublings+skipCount, true));
}
else
bases.push_back(rd.DoDoublings(futureDoublings+skipCount, false));
exponents.push_back(subExponent);
futureDoublings = windowSize;
}
std::vector<std::pair<Integer, Point> > finalCascade(bases.size());
ParallelInvert(field, ZIterator(bases.begin()), ZIterator(bases.end()));
for (int i=0; i<finalCascade.size(); i++)
{
finalCascade[i].first = exponents[i];
if (!!bases[i].z)
{
finalCascade[i].second.identity = false;
finalCascade[i].second.x = field.Square(bases[i].z);
finalCascade[i].second.y = field.Multiply(finalCascade[i].second.x, bases[i].z);
finalCascade[i].second.x = field.Multiply(finalCascade[i].second.x, bases[i].x);
finalCascade[i].second.y = field.Multiply(finalCascade[i].second.y, bases[i].y);
}
}
return GeneralCascadeMultiplication(*this, finalCascade.begin(), finalCascade.end());
}
ECP::Point ECP::Multiply(const Integer &k, const Point &P) const
{
// return ScalarMultiply(P, k);
MontgomeryRepresentation mr(field.GetModulus());
ECP ecpmr(mr, mr.ConvertIn(a), mr.ConvertIn(b));
return FromMontgomery(mr, ecpmr.ScalarMultiply(ToMontgomery(mr, P), k));
}
ECP::Point ECP::CascadeMultiply(const Integer &k1, const Point &P, const Integer &k2, const Point &Q) const
{
// return CascadeMultiplication(*this, P, k1, Q, k2);
MontgomeryRepresentation mr(field.GetModulus());
ECP ecpmr(mr, mr.ConvertIn(a), mr.ConvertIn(b));
return FromMontgomery(mr, ecpmr.CascadeScalarMultiply(ToMontgomery(mr, P), k1, ToMontgomery(mr, Q), k2));
}
// ********************************************************
EcPrecomputation<ECP>::EcPrecomputation()
{
}
EcPrecomputation<ECP>::EcPrecomputation(const EcPrecomputation<ECP> &ecp)
: mr(new MontgomeryRepresentation(*ecp.mr))
, ec(new ECP(*mr, ecp.ec->GetA(), ecp.ec->GetB()))
, ep(new ExponentiationPrecomputation<ECP::Point>(*ec, *ecp.ep))
{
}
EcPrecomputation<ECP>::EcPrecomputation(const ECP &ecIn, const ECP::Point &base, unsigned int maxExpBits, unsigned int storage)
: mr(new MontgomeryRepresentation(ecIn.GetField().GetModulus()))
, ec(new ECP(*mr, mr->ConvertIn(ecIn.GetA()), mr->ConvertIn(ecIn.GetB())))
, ep(NULL)
{
Precompute(base, maxExpBits, storage);
}
EcPrecomputation<ECP>::~EcPrecomputation()
{
}
void EcPrecomputation<ECP>::Precompute(const ECP::Point &base, unsigned int maxExpBits, unsigned int storage)
{
ep.reset(new ExponentiationPrecomputation<ECP::Point>(*ec, ToMontgomery(*mr, base), maxExpBits, storage));
}
void EcPrecomputation<ECP>::Load(BufferedTransformation &bt)
{
ep.reset(new ExponentiationPrecomputation<ECP::Point>(*ec));
BERSequenceDecoder seq(bt);
ep->storage = (unsigned int)(Integer(seq).ConvertToLong());
ep->exponentBase.BERDecode(seq);
ep->g.resize(ep->storage);
for (unsigned i=0; i<ep->storage; i++)
{
ep->g[i].identity = false;
ep->g[i].x.BERDecode(seq);
ep->g[i].y.BERDecode(seq);
}
seq.OutputFinished();
}
void EcPrecomputation<ECP>::Save(BufferedTransformation &bt) const
{
assert(ep.get());
DERSequenceEncoder seq(bt);
Integer(ep->storage).DEREncode(seq);
ep->exponentBase.DEREncode(seq);
for (unsigned i=0; i<ep->storage; i++)
{
ep->g[i].x.DEREncode(seq);
ep->g[i].y.DEREncode(seq);
}
seq.InputFinished();
}
ECP::Point EcPrecomputation<ECP>::Multiply(const Integer &exponent) const
{
assert(ep.get());
return FromMontgomery(*mr, ep->Exponentiate(exponent));
}
ECP::Point EcPrecomputation<ECP>::CascadeMultiply(const Integer &exponent, const EcPrecomputation<ECP> &pc2, const Integer &exponent2) const
{
assert(ep.get());
return FromMontgomery(*mr, ep->CascadeExponentiate(exponent, *pc2.ep, exponent2));
}
NAMESPACE_END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -