📄 algebra.h
字号:
#ifndef CRYPTOPP_ALGEBRA_H
#define CRYPTOPP_ALGEBRA_H
NAMESPACE_BEGIN(CryptoPP)
class Integer;
// "const Element&" returned by member functions are references
// to internal data members. Since each object may have only
// one such data member for holding results, the following code
// will produce incorrect results:
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
// But this should be fine:
// abcd = group.Add(a, group.Add(b, group.Add(c,d));
template <class T> class AbstractGroup
{
public:
typedef T Element;
virtual ~AbstractGroup() {}
virtual bool Equal(const Element &a, const Element &b) const =0;
virtual const Element& Zero() const =0;
virtual const Element& Add(const Element &a, const Element &b) const =0;
virtual const Element& Inverse(const Element &a) const =0;
virtual const Element& Double(const Element &a) const;
virtual const Element& Subtract(const Element &a, const Element &b) const;
virtual Element& Accumulate(Element &a, const Element &b) const;
virtual Element& Reduce(Element &a, const Element &b) const;
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
};
template <class T> class AbstractRing : public AbstractGroup<T>
{
public:
typedef T Element;
virtual bool IsUnit(const Element &a) const =0;
virtual const Element& One() const =0;
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
virtual const Element& Square(const Element &a) const;
virtual const Element& Divide(const Element &a, const Element &b) const;
virtual Element Exponentiate(const Element &a, const Integer &e) const;
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
virtual const AbstractGroup<T>& MultiplicativeGroup() const =0;
};
template <class T> class MultiplicativeGroupT : public AbstractGroup<T>
{
public:
typedef AbstractRing<T> Ring;
typedef T Element;
MultiplicativeGroupT(const Ring &m_ring)
: m_ring(m_ring) {}
const Ring & GetRing() const
{return m_ring;}
bool Equal(const Element &a, const Element &b) const
{return m_ring.Equal(a, b);}
const Element& Zero() const
{return m_ring.One();}
const Element& Add(const Element &a, const Element &b) const
{return m_ring.Multiply(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return a = m_ring.Multiply(a, b);}
const Element& Inverse(const Element &a) const
{return m_ring.MultiplicativeInverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return m_ring.Divide(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return a = m_ring.Divide(a, b);}
const Element& Double(const Element &a) const
{return m_ring.Square(a);}
protected:
const Ring &m_ring;
};
template <class T> class RingWithDefaultMultiplicativeGroup : public AbstractRing<T>
{
public:
typedef T Element;
RingWithDefaultMultiplicativeGroup() : m_mg(*this) {}
const AbstractGroup<T>& MultiplicativeGroup() const
{return m_mg;}
private:
MultiplicativeGroupT<T> m_mg;
};
// ********************************************************
// VC60 workaround: incomplete member template support
template <class Element, class Iterator>
Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
template <class Element, class Iterator, class ConstIterator>
void SimultaneousMultiplication(Iterator result, const AbstractGroup<Element> &group, const Element &base, ConstIterator expBegin, ConstIterator expEnd);
template <class Element, class Iterator>
Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
template <class Element, class Iterator, class ConstIterator>
void SimultaneousExponentiation(Iterator result, const AbstractRing<Element> &ring, const Element &base, ConstIterator expBegin, ConstIterator expEnd);
// ********************************************************
template <class T> class AbstractEuclideanDomain : public RingWithDefaultMultiplicativeGroup<T>
{
public:
typedef T Element;
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
virtual const Element& Mod(const Element &a, const Element &b) const =0;
virtual const Element& Gcd(const Element &a, const Element &b) const;
protected:
mutable Element result;
};
// ********************************************************
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
{
public:
typedef T Element;
EuclideanDomainOf() {}
bool Equal(const Element &a, const Element &b) const
{return a==b;}
const Element& Zero() const
{return Element::Zero();}
const Element& Add(const Element &a, const Element &b) const
{return result = a+b;}
Element& Accumulate(Element &a, const Element &b) const
{return a+=b;}
const Element& Inverse(const Element &a) const
{return result = -a;}
const Element& Subtract(const Element &a, const Element &b) const
{return result = a-b;}
Element& Reduce(Element &a, const Element &b) const
{return a-=b;}
const Element& Double(const Element &a) const
{return result = a.Doubled();}
const Element& One() const
{return Element::One();}
const Element& Multiply(const Element &a, const Element &b) const
{return result = a*b;}
const Element& Square(const Element &a) const
{return result = a.Squared();}
bool IsUnit(const Element &a) const
{return a.IsUnit();}
const Element& MultiplicativeInverse(const Element &a) const
{return result = a.MultiplicativeInverse();}
const Element& Divide(const Element &a, const Element &b) const
{return result = a/b;}
const Element& Mod(const Element &a, const Element &b) const
{return result = a%b;}
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
{Element::Divide(r, q, a, d);}
private:
mutable Element result;
};
template <class T> class QuotientRing : public RingWithDefaultMultiplicativeGroup<typename T::Element>
{
public:
typedef T EuclideanDomain;
typedef typename T::Element Element;
QuotientRing(const EuclideanDomain &domain, const Element &modulus)
: m_domain(domain), m_modulus(modulus) {}
const EuclideanDomain & GetDomain() const
{return m_domain;}
const Element& GetModulus() const
{return m_modulus;}
bool Equal(const Element &a, const Element &b) const
{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Zero());}
const Element& Zero() const
{return m_domain.Zero();}
const Element& Add(const Element &a, const Element &b) const
{return m_domain.Add(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return m_domain.Accumulate(a, b);}
const Element& Inverse(const Element &a) const
{return m_domain.Inverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return m_domain.Subtract(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return m_domain.Reduce(a, b);}
const Element& Double(const Element &a) const
{return m_domain.Double(a);}
bool IsUnit(const Element &a) const
{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
const Element& One() const
{return m_domain.One();}
const Element& Multiply(const Element &a, const Element &b) const
{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
const Element& Square(const Element &a) const
{return m_domain.Mod(m_domain.Square(a), m_modulus);}
const Element& MultiplicativeInverse(const Element &a) const;
protected:
EuclideanDomain m_domain;
Element m_modulus;
};
NAMESPACE_END
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -