⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 big_num.c

📁 rsa加密算法源码
💻 C
字号:
/* * NN.C - natural numbers routines */#include "rsaref.h"#include "big_num.h"static NN_DIGIT NN_AddDigitMult PROTO_LIST   ((NN_DIGIT *, NN_DIGIT *, NN_DIGIT, NN_DIGIT *, unsigned int));static NN_DIGIT NN_SubDigitMult PROTO_LIST   ((NN_DIGIT *, NN_DIGIT *, NN_DIGIT, NN_DIGIT *, unsigned int));static unsigned int NN_DigitBits PROTO_LIST ((NN_DIGIT));/* Decodes character string b into a, where character string is ordered   from most to least significant.   Lengths: a[digits], b[len].   Assumes b[i] = 0 for i < len - digits * NN_DIGIT_LEN. (Otherwise most   significant bytes are truncated.) */void NN_Decode (a, digits, b, len)NN_DIGIT *a;unsigned char *b;unsigned int digits, len;{  NN_DIGIT t;  int j;  unsigned int i, u;    for (i = 0, j = len - 1; i < digits && j >= 0; i++) {    t = 0;    for (u = 0; j >= 0 && u < NN_DIGIT_BITS; j--, u += 8)      t |= ((NN_DIGIT)b[j]) << u;    a[i] = t;  }    for (; i < digits; i++)    a[i] = 0;}/* Encodes b into character string a, where character string is ordered   from most to least significant.   Lengths: a[len], b[digits].   Assumes NN_Bits (b, digits) <= 8 * len. (Otherwise most significant   digits are truncated.) */void NN_Encode (a, len, b, digits)NN_DIGIT *b;unsigned char *a;unsigned int digits, len;{  NN_DIGIT t;  int j;  unsigned int i, u;  for (i = 0, j = len - 1; i < digits && j >= 0; i++) {    t = b[i];    for (u = 0; j >= 0 && u < NN_DIGIT_BITS; j--, u += 8)      a[j] = (unsigned char)(t >> u);  }  for (; j >= 0; j--)    a[j] = 0;}/* Assigns a = b.   Lengths: a[digits], b[digits]. */void NN_Assign (a, b, digits)NN_DIGIT *a, *b;unsigned int digits;{  unsigned int i;  for (i = 0; i < digits; i++)    a[i] = b[i];}/* Assigns a = 0.   Lengths: a[digits]. */void NN_AssignZero (a, digits)NN_DIGIT *a;unsigned int digits;{  unsigned int i;  for (i = 0; i < digits; i++)    a[i] = 0;}/* Assigns a = 2^b.   Lengths: a[digits].   Requires b < digits * NN_DIGIT_BITS. */void NN_Assign2Exp (a, b, digits)NN_DIGIT *a;unsigned int b, digits;{  NN_AssignZero (a, digits);  if (b >= digits * NN_DIGIT_BITS)    return;  a[b / NN_DIGIT_BITS] = (NN_DIGIT)1 << (b % NN_DIGIT_BITS);}/* Computes a = b + c. Returns carry.   Lengths: a[digits], b[digits], c[digits]. */NN_DIGIT NN_Add (a, b, c, digits)NN_DIGIT *a, *b, *c;unsigned int digits;{  NN_DIGIT ai, carry;  unsigned int i;  carry = 0;  for (i = 0; i < digits; i++) {    if ((ai = b[i] + carry) < carry)      ai = c[i];    else if ((ai += c[i]) < c[i])      carry = 1;    else      carry = 0;    a[i] = ai;  }  return (carry);}/* Computes a = b - c. Returns borrow.   Lengths: a[digits], b[digits], c[digits]. */NN_DIGIT NN_Sub (a, b, c, digits)NN_DIGIT *a, *b, *c;unsigned int digits;{  NN_DIGIT ai, borrow;  unsigned int i;  borrow = 0;  for (i = 0; i < digits; i++) {    if ((ai = b[i] - borrow) > (MAX_NN_DIGIT - borrow))      ai = MAX_NN_DIGIT - c[i];    else if ((ai -= c[i]) > (MAX_NN_DIGIT - c[i]))      borrow = 1;    else      borrow = 0;    a[i] = ai;  }  return (borrow);}/* Computes a = b * c.   Lengths: a[2*digits], b[digits], c[digits].   Assumes digits < MAX_NN_DIGITS. */void NN_Mult (a, b, c, digits)NN_DIGIT *a, *b, *c;unsigned int digits;{  NN_DIGIT t[2*MAX_NN_DIGITS];  unsigned int bDigits, cDigits, i;  NN_AssignZero (t, 2 * digits);    bDigits = NN_Digits (b, digits);  cDigits = NN_Digits (c, digits);  for (i = 0; i < bDigits; i++)    t[i+cDigits] += NN_AddDigitMult (&t[i], &t[i], b[i], c, cDigits);    NN_Assign (a, t, 2 * digits);    /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)t, 0, sizeof (t));}/* Computes a = b * 2^c (i.e., shifts left c bits), returning carry.   Lengths: a[digits], b[digits].   Requires c < NN_DIGIT_BITS. */NN_DIGIT NN_LShift (a, b, c, digits)NN_DIGIT *a, *b;unsigned int c, digits;{  NN_DIGIT bi, carry;  unsigned int i, t;    if (c >= NN_DIGIT_BITS)    return (0);    t = NN_DIGIT_BITS - c;  carry = 0;  for (i = 0; i < digits; i++) {    bi = b[i];    a[i] = (bi << c) | carry;    carry = c ? (bi >> t) : 0;  }    return (carry);}/* Computes a = c div 2^c (i.e., shifts right c bits), returning carry.   Lengths: a[digits], b[digits].   Requires: c < NN_DIGIT_BITS. */NN_DIGIT NN_RShift (a, b, c, digits)NN_DIGIT *a, *b;unsigned int c, digits;{  NN_DIGIT bi, carry;  int i;  unsigned int t;    if (c >= NN_DIGIT_BITS)    return (0);    t = NN_DIGIT_BITS - c;  carry = 0;  for (i = digits - 1; i >= 0; i--) {    bi = b[i];    a[i] = (bi >> c) | carry;    carry = c ? (bi << t) : 0;  }    return (carry);}/* Computes a = c div d and b = c mod d.   Lengths: a[cDigits], b[dDigits], c[cDigits], d[dDigits].   Assumes d > 0, cDigits < 2 * MAX_NN_DIGITS,           dDigits < MAX_NN_DIGITS. */void NN_Div (a, b, c, cDigits, d, dDigits)NN_DIGIT *a, *b, *c, *d;unsigned int cDigits, dDigits;{  NN_DIGIT ai, cc[2*MAX_NN_DIGITS+1], dd[MAX_NN_DIGITS], t;  int i;  unsigned int ddDigits, shift;    ddDigits = NN_Digits (d, dDigits);  if (ddDigits == 0)    return;    /* Normalize operands.   */  shift = NN_DIGIT_BITS - NN_DigitBits (d[ddDigits-1]);  NN_AssignZero (cc, ddDigits);  cc[cDigits] = NN_LShift (cc, c, shift, cDigits);  NN_LShift (dd, d, shift, ddDigits);  t = dd[ddDigits-1];    NN_AssignZero (a, cDigits);  for (i = cDigits-ddDigits; i >= 0; i--) {    /* Underestimate quotient digit and subtract.     */    if (t == MAX_NN_DIGIT)      ai = cc[i+ddDigits];    else      NN_DigitDiv (&ai, &cc[i+ddDigits-1], t + 1);    cc[i+ddDigits] -= NN_SubDigitMult (&cc[i], &cc[i], ai, dd, ddDigits);    /* Correct estimate.     */    while (cc[i+ddDigits] || (NN_Cmp (&cc[i], dd, ddDigits) >= 0)) {      ai++;      cc[i+ddDigits] -= NN_Sub (&cc[i], &cc[i], dd, ddDigits);    }        a[i] = ai;  }    /* Restore result.   */  NN_AssignZero (b, dDigits);  NN_RShift (b, cc, shift, ddDigits);  /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)cc, 0, sizeof (cc));  R_memset ((POINTER)dd, 0, sizeof (dd));}/* Computes a = b mod c.   Lengths: a[cDigits], b[bDigits], c[cDigits].   Assumes c > 0, bDigits < 2 * MAX_NN_DIGITS, cDigits < MAX_NN_DIGITS. */void NN_Mod (a, b, bDigits, c, cDigits)NN_DIGIT *a, *b, *c;unsigned int bDigits, cDigits;{  NN_DIGIT t[2 * MAX_NN_DIGITS];    NN_Div (t, a, b, bDigits, c, cDigits);    /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)t, 0, sizeof (t));}/* Computes a = b * c mod d.   Lengths: a[digits], b[digits], c[digits], d[digits].   Assumes d > 0, digits < MAX_NN_DIGITS. */void NN_ModMult (a, b, c, d, digits)NN_DIGIT *a, *b, *c, *d;unsigned int digits;{  NN_DIGIT t[2*MAX_NN_DIGITS];  NN_Mult (t, b, c, digits);  NN_Mod (a, t, 2 * digits, d, digits);    /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)t, 0, sizeof (t));}/* Computes a = b^c mod d.   Lengths: a[dDigits], b[dDigits], c[cDigits], d[dDigits].   Assumes d > 0, cDigits > 0, dDigits < MAX_NN_DIGITS. *//* PGP 2.5's mpilib contains a faster modular exponentiation routine, mp_modexp.   If USEMPILIB is defined, NN_ModExp is replaced in the PGP 2.5 sources with a    stub call to mp_modexp.  If USEMPILIB is not defined, we'll get a pure (albeit   slower) RSAREF implementation.   The RSAREF 2.0 license, clause 1(c), permits "...modify[ing] the Program in any   manner for porting or performance improvement purposes..." */#ifndef USEMPILIBvoid NN_ModExp (a, b, c, cDigits, d, dDigits)NN_DIGIT *a, *b, *c, *d;unsigned int cDigits, dDigits;{  NN_DIGIT bPower[3][MAX_NN_DIGITS], ci, t[MAX_NN_DIGITS];  int i;  unsigned int ciBits, j, s;  /* Store b, b^2 mod d, and b^3 mod d.   */  NN_Assign (bPower[0], b, dDigits);  NN_ModMult (bPower[1], bPower[0], b, d, dDigits);  NN_ModMult (bPower[2], bPower[1], b, d, dDigits);    NN_ASSIGN_DIGIT (t, 1, dDigits);  cDigits = NN_Digits (c, cDigits);  for (i = cDigits - 1; i >= 0; i--) {    ci = c[i];    ciBits = NN_DIGIT_BITS;        /* Scan past leading zero bits of most significant digit.     */    if (i == (int)(cDigits - 1)) {      while (! DIGIT_2MSB (ci)) {        ci <<= 2;        ciBits -= 2;      }    }    for (j = 0; j < ciBits; j += 2, ci <<= 2) {      /* Compute t = t^4 * b^s mod d, where s = two MSB's of ci.       */      NN_ModMult (t, t, t, d, dDigits);      NN_ModMult (t, t, t, d, dDigits);      if ((s = DIGIT_2MSB (ci)) != 0)        NN_ModMult (t, t, bPower[s-1], d, dDigits);    }  }    NN_Assign (a, t, dDigits);    /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)bPower, 0, sizeof (bPower));  R_memset ((POINTER)t, 0, sizeof (t));}#endif/* Compute a = 1/b mod c, assuming inverse exists.      Lengths: a[digits], b[digits], c[digits].   Assumes gcd (b, c) = 1, digits < MAX_NN_DIGITS. */void NN_ModInv (a, b, c, digits)NN_DIGIT *a, *b, *c;unsigned int digits;{  NN_DIGIT q[MAX_NN_DIGITS], t1[MAX_NN_DIGITS], t3[MAX_NN_DIGITS],    u1[MAX_NN_DIGITS], u3[MAX_NN_DIGITS], v1[MAX_NN_DIGITS],    v3[MAX_NN_DIGITS], w[2*MAX_NN_DIGITS];  int u1Sign;  /* Apply extended Euclidean algorithm, modified to avoid negative     numbers.   */  NN_ASSIGN_DIGIT (u1, 1, digits);  NN_AssignZero (v1, digits);  NN_Assign (u3, b, digits);  NN_Assign (v3, c, digits);  u1Sign = 1;  while (! NN_Zero (v3, digits)) {    NN_Div (q, t3, u3, digits, v3, digits);    NN_Mult (w, q, v1, digits);    NN_Add (t1, u1, w, digits);    NN_Assign (u1, v1, digits);    NN_Assign (v1, t1, digits);    NN_Assign (u3, v3, digits);    NN_Assign (v3, t3, digits);    u1Sign = -u1Sign;  }    /* Negate result if sign is negative.    */  if (u1Sign < 0)    NN_Sub (a, c, u1, digits);  else    NN_Assign (a, u1, digits);  /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)q, 0, sizeof (q));  R_memset ((POINTER)t1, 0, sizeof (t1));  R_memset ((POINTER)t3, 0, sizeof (t3));  R_memset ((POINTER)u1, 0, sizeof (u1));  R_memset ((POINTER)u3, 0, sizeof (u3));  R_memset ((POINTER)v1, 0, sizeof (v1));  R_memset ((POINTER)v3, 0, sizeof (v3));  R_memset ((POINTER)w, 0, sizeof (w));}/* Computes a = gcd(b, c).   Lengths: a[digits], b[digits], c[digits].   Assumes b > c, digits < MAX_NN_DIGITS. */void NN_Gcd (a, b, c, digits)NN_DIGIT *a, *b, *c;unsigned int digits;{  NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS];  NN_Assign (u, b, digits);  NN_Assign (v, c, digits);  while (! NN_Zero (v, digits)) {    NN_Mod (t, u, digits, v, digits);    NN_Assign (u, v, digits);    NN_Assign (v, t, digits);  }  NN_Assign (a, u, digits);  /* Zeroize potentially sensitive information.   */  R_memset ((POINTER)t, 0, sizeof (t));  R_memset ((POINTER)u, 0, sizeof (u));  R_memset ((POINTER)v, 0, sizeof (v));}/* Returns sign of a - b.   Lengths: a[digits], b[digits]. */int NN_Cmp (a, b, digits)NN_DIGIT *a, *b;unsigned int digits;{  int i;    for (i = digits - 1; i >= 0; i--) {    if (a[i] > b[i])      return (1);    if (a[i] < b[i])      return (-1);  }  return (0);}/* Returns nonzero iff a is zero.   Lengths: a[digits]. */int NN_Zero (a, digits)NN_DIGIT *a;unsigned int digits;{  unsigned int i;    for (i = 0; i < digits; i++)    if (a[i])      return (0);      return (1);}/* Returns the significant length of a in bits.   Lengths: a[digits]. */unsigned int NN_Bits (a, digits)NN_DIGIT *a;unsigned int digits;{  if ((digits = NN_Digits (a, digits)) == 0)    return (0);  return ((digits - 1) * NN_DIGIT_BITS + NN_DigitBits (a[digits-1]));}/* Returns the significant length of a in digits.   Lengths: a[digits]. */unsigned int NN_Digits (a, digits)NN_DIGIT *a;unsigned int digits;{  int i;    for (i = digits - 1; i >= 0; i--)    if (a[i])      break;  return (i + 1);}/* Computes a = b + c*d, where c is a digit. Returns carry.   Lengths: a[digits], b[digits], d[digits]. */static NN_DIGIT NN_AddDigitMult (a, b, c, d, digits)NN_DIGIT *a, *b, c, *d;unsigned int digits;{  NN_DIGIT carry, t[2];  unsigned int i;  if (c == 0)    return (0);  carry = 0;  for (i = 0; i < digits; i++) {    NN_DigitMult (t, c, d[i]);    if ((a[i] = b[i] + carry) < carry)      carry = 1;    else      carry = 0;    if ((a[i] += t[0]) < t[0])      carry++;    carry += t[1];  }    return (carry);}/* Computes a = b - c*d, where c is a digit. Returns borrow.   Lengths: a[digits], b[digits], d[digits]. */static NN_DIGIT NN_SubDigitMult (a, b, c, d, digits)NN_DIGIT *a, *b, c, *d;unsigned int digits;{  NN_DIGIT borrow, t[2];  unsigned int i;  if (c == 0)    return (0);  borrow = 0;  for (i = 0; i < digits; i++) {    NN_DigitMult (t, c, d[i]);    if ((a[i] = b[i] - borrow) > (MAX_NN_DIGIT - borrow))      borrow = 1;    else      borrow = 0;    if ((a[i] -= t[0]) > (MAX_NN_DIGIT - t[0]))      borrow++;    borrow += t[1];  }    return (borrow);}/* Returns the significant length of a in bits, where a is a digit. */static unsigned int NN_DigitBits (a)NN_DIGIT a;{  unsigned int i;    for (i = 0; i < NN_DIGIT_BITS; i++, a >>= 1)    if (a == 0)      break;      return (i);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -