📄 rsa.c
字号:
((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));static int RelativelyPrime PROTO_LIST ((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));/* Generates an RSA key pair with a given length and public exponent. */int R_GeneratePEMKeys (publicKey, privateKey, protoKey, randomStruct)R_RSA_PUBLIC_KEY *publicKey; /* new RSA public key */R_RSA_PRIVATE_KEY *privateKey; /* new RSA private key */R_RSA_PROTO_KEY *protoKey; /* RSA prototype key */R_RANDOM_STRUCT *randomStruct; /* random structure */{ NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS], pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS], qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; int status; unsigned int nDigits, pBits, pDigits, qBits; if ((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS)) return (RE_MODULUS_LEN); nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; pDigits = (nDigits + 1) / 2; pBits = (protoKey->bits + 1) / 2; qBits = protoKey->bits - pBits; /* NOTE: for 65537, this assumes NN_DIGIT is at least 17 bits. */ NN_ASSIGN_DIGIT (e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits); /* Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching in steps of 2, until one satisfies gcd (p-1, e) = 1. */ NN_Assign2Exp (t, pBits-1, pDigits); NN_Assign2Exp (u, pBits-2, pDigits); NN_Add (t, t, u, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); do { if (status = GeneratePrime (p, t, u, v, pDigits, randomStruct)) return (status); } while (! RSAFilter (p, pDigits, e, 1)); /* Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching in steps of 2, until one satisfies gcd (q-1, e) = 1. */ NN_Assign2Exp (t, qBits-1, pDigits); NN_Assign2Exp (u, qBits-2, pDigits); NN_Add (t, t, u, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); do { if (status = GeneratePrime (q, t, u, v, pDigits, randomStruct)) return (status); } while (! RSAFilter (q, pDigits, e, 1)); /* Sort so that p > q. (p = q case is extremely unlikely.) */ if (NN_Cmp (p, q, pDigits) < 0) { NN_Assign (t, p, pDigits); NN_Assign (p, q, pDigits); NN_Assign (q, t, pDigits); } /* Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1), dP = d mod p-1, dQ = d mod q-1. */ NN_Mult (n, p, q, pDigits); NN_ModInv (qInv, q, p, pDigits); NN_ASSIGN_DIGIT (t, 1, pDigits); NN_Sub (pMinus1, p, t, pDigits); NN_Sub (qMinus1, q, t, pDigits); NN_Mult (phiN, pMinus1, qMinus1, pDigits); NN_ModInv (d, e, phiN, nDigits); NN_Mod (dP, d, nDigits, pMinus1, pDigits); NN_Mod (dQ, d, nDigits, qMinus1, pDigits); publicKey->bits = privateKey->bits = protoKey->bits; NN_Encode (publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits); NN_Encode (publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1); R_memcpy ((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN); R_memcpy ((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN); NN_Encode (privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits); NN_Encode (privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits); NN_Encode (privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits); NN_Encode (privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits); NN_Encode (privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits); NN_Encode (privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)d, 0, sizeof (d)); R_memset ((POINTER)dP, 0, sizeof (dP)); R_memset ((POINTER)dQ, 0, sizeof (dQ)); R_memset ((POINTER)p, 0, sizeof (p)); R_memset ((POINTER)phiN, 0, sizeof (phiN)); R_memset ((POINTER)pMinus1, 0, sizeof (pMinus1)); R_memset ((POINTER)q, 0, sizeof (q)); R_memset ((POINTER)qInv, 0, sizeof (qInv)); R_memset ((POINTER)qMinus1, 0, sizeof (qMinus1)); R_memset ((POINTER)t, 0, sizeof (t)); return (0);}/* Returns nonzero iff GCD (a-1, b) = 1. Lengths: a[aDigits], b[bDigits]. Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */static int RSAFilter (a, aDigits, b, bDigits)NN_DIGIT *a, *b;unsigned int aDigits, bDigits;{ int status; NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS]; NN_ASSIGN_DIGIT (t, 1, aDigits); NN_Sub (aMinus1, a, t, aDigits); status = RelativelyPrime (aMinus1, aDigits, b, bDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)aMinus1, 0, sizeof (aMinus1)); return (status);}/* Returns nonzero iff a and b are relatively prime. Lengths: a[aDigits], b[bDigits]. Assumes aDigits >= bDigits, aDigits < MAX_NN_DIGITS. */static int RelativelyPrime (a, aDigits, b, bDigits)NN_DIGIT *a, *b;unsigned int aDigits, bDigits;{ int status; NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS]; NN_AssignZero (t, aDigits); NN_Assign (t, b, bDigits); NN_Gcd (t, a, t, aDigits); NN_ASSIGN_DIGIT (u, 1, aDigits); status = NN_EQUAL (t, u, aDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)t, 0, sizeof (t)); return (status);}/* Generates Diffie-Hellman parameters. */int R_GenerateDHParams (params, primeBits, subPrimeBits, randomStruct)R_DH_PARAMS *params; /* new Diffie-Hellman parameters */unsigned int primeBits; /* length of prime in bits */unsigned int subPrimeBits; /* length of subprime in bits */R_RANDOM_STRUCT *randomStruct; /* random structure */{ int status; NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; unsigned int pDigits; pDigits = (primeBits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; /* Generate subprime q between 2^(subPrimeBits-1) and 2^subPrimeBits-1, searching in steps of 2. */ NN_Assign2Exp (t, subPrimeBits-1, pDigits); NN_Assign (u, t, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); if (status = GeneratePrime (q, t, u, v, pDigits, randomStruct)) return (status); /* Generate prime p between 2^(primeBits-1) and 2^primeBits-1, searching in steps of 2*q. */ NN_Assign2Exp (t, primeBits-1, pDigits); NN_Assign (u, t, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_LShift (v, q, 1, pDigits); if (status = GeneratePrime (p, t, u, v, pDigits, randomStruct)) return (status); /* Generate generator g for subgroup as 2^((p-1)/q) mod p. */ NN_ASSIGN_DIGIT (g, 2, pDigits); NN_Div (t, u, p, pDigits, q, pDigits); NN_ModExp (g, g, t, pDigits, p, pDigits); params->generatorLen = params->primeLen = DH_PRIME_LEN (primeBits); NN_Encode (params->prime, params->primeLen, p, pDigits); NN_Encode (params->generator, params->generatorLen, g, pDigits); return (0);}/* Sets up Diffie-Hellman key agreement. Public value has same length as prime. */int R_SetupDHAgreement (publicValue, privateValue, privateValueLen, params, randomStruct)unsigned char *publicValue; /* new public value */unsigned char *privateValue; /* new private value */unsigned int privateValueLen; /* length of private value */R_DH_PARAMS *params; /* Diffie-Hellman parameters */R_RANDOM_STRUCT *randomStruct; /* random structure */{ int status; NN_DIGIT g[MAX_NN_DIGITS], p[MAX_NN_DIGITS], x[MAX_NN_DIGITS], y[MAX_NN_DIGITS]; unsigned int pDigits, xDigits; NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen); pDigits = NN_Digits (p, MAX_NN_DIGITS); NN_Decode (g, pDigits, params->generator, params->generatorLen); /* Generate private value. */ if (status = R_GenerateBytes (privateValue, privateValueLen, randomStruct)) return (status); NN_Decode (x, pDigits, privateValue, privateValueLen); xDigits = NN_Digits (x, pDigits); /* Compute y = g^x mod p. */ NN_ModExp (y, g, x, xDigits, p, pDigits); NN_Encode (publicValue, params->primeLen, y, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)x, 0, sizeof (x)); return (0);}/* Computes agreed key from the other party's public value, a private value, and Diffie-Hellman parameters. Other public value and agreed-upon key have same length as prime. Requires otherPublicValue < prime. */int R_ComputeDHAgreedKey (agreedKey, otherPublicValue, privateValue, privateValueLen, params)unsigned char *agreedKey; /* new agreed key */unsigned char *otherPublicValue; /* other's public value */unsigned char *privateValue; /* private value */unsigned int privateValueLen; /* length of private value */R_DH_PARAMS *params; /* Diffie-Hellman parameters */{ NN_DIGIT p[MAX_NN_DIGITS], x[MAX_NN_DIGITS], y[MAX_NN_DIGITS], z[MAX_NN_DIGITS]; unsigned int pDigits, xDigits; NN_Decode (p, MAX_NN_DIGITS, params->prime, params->primeLen); pDigits = NN_Digits (p, MAX_NN_DIGITS); NN_Decode (x, pDigits, privateValue, privateValueLen); xDigits = NN_Digits (x, pDigits); NN_Decode (y, pDigits, otherPublicValue, params->primeLen); if (NN_Cmp (y, p, pDigits) >= 0) return (RE_DATA); /* Compute z = y^x mod p. */ NN_ModExp (z, y, x, xDigits, p, pDigits); NN_Encode (agreedKey, params->primeLen, z, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)x, 0, sizeof (x)); R_memset ((POINTER)z, 0, sizeof (z)); return (0);}/* * memory funciton */void R_memset (output, value, len)POINTER output; /* output block */int value; /* value */unsigned int len; /* length of block */{ if (len) memset (output, value, len);}void R_memcpy (output, input, len)POINTER output; /* output block */POINTER input; /* input block */unsigned int len; /* length of blocks */{ if (len) memcpy (output, input, len);}int R_memcmp (firstBlock, secondBlock, len)POINTER firstBlock; /* first block */POINTER secondBlock; /* second block */unsigned int len; /* length of blocks */{ if (len) return (memcmp (firstBlock, secondBlock, len)); else return (0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -