📄 cbrtll.c
字号:
/* cbrtl.c * * Cube root, long double precision * * * * SYNOPSIS: * * long double x, y, cbrtl(); * * y = cbrtl( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE .125,8 80000 1.2e-34 3.8e-35 * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 * *//*Cephes Math Library Release 2.2: January, 1991Copyright 1984, 1991 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include "mconf.h"static long double CBRT2 = 1.259921049894873164767210607278228350570251L;static long double CBRT4 = 1.587401051968199474751705639272308260391493L;static long double CBRT2I = 0.7937005259840997373758528196361541301957467L;static long double CBRT4I = 0.6299605249474365823836053036391141752851257L;long double cbrtl(x)long double x;{int e, rem, sign;long double z;long double frexpl(), ldexpl();if( x == 0 ) return( 0.0L );if( x > 0 ) sign = 1;else { sign = -1; x = -x; }z = x;/* extract power of 2, leaving * mantissa between 0.5 and 1 */x = frexpl( x, &e );/* Approximate cube root of number between .5 and 1, * peak relative error = 1.2e-6 */x = (((( 1.3584464340920900529734e-1L * x - 6.3986917220457538402318e-1L) * x + 1.2875551670318751538055e0L) * x - 1.4897083391357284957891e0L) * x + 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;/* exponent divided by 3 */if( e >= 0 ) { rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2; else if( rem == 2 ) x *= CBRT4; }else { /* argument less than 1 */ e = -e; rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2I; else if( rem == 2 ) x *= CBRT4I; e = -e; }/* multiply by power of 2 */x = ldexpl( x, e );/* Newton iteration */x -= ( x - (z/(x*x)) )*0.3333333333333333333333333333333333333333L;x -= ( x - (z/(x*x)) )*0.3333333333333333333333333333333333333333L;x -= ( x - (z/(x*x)) )*0.3333333333333333333333333333333333333333L;if( sign < 0 ) x = -x;return(x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -