⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 floorll.c

📁 128位长双精度型数字运算包
💻 C
字号:
/*                                                      ceill() *                                                      floorl() *                                                      frexpl() *                                                      ldexpl() *                                                      fabsl() *							signbitl() *							isnanl() *							isfinitel() * *      Floating point numeric utilities * * * * SYNOPSIS: * * long double x, y; * long double ceill(), floorl(), frexpl(), ldexpl(), fabsl(); * int signbitl(), isnanl(), isfinitel(); * int expnt, n; * * y = floorl(x); * y = ceill(x); * y = frexpl( x, &expnt ); * y = ldexpl( x, n ); * y = fabsl( x ); * * * * DESCRIPTION: * * All four routines return a long double precision floating point * result. * * floorl() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * ceill() returns the smallest integer greater than or equal * to x.  It truncates toward plus infinity. * * frexpl() extracts the exponent from x.  It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y.  Thus  x = y * 2**expn. * * ldexpl() multiplies x by 2**n. * * fabsl() returns the absolute value of its argument. * * signbitl(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for some but not all C compilers.  The ones supplied are * written in C for IEEE arithmetic.  They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic.  Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include "mconf.h"#define DENORMAL 1#ifdef UNKchar *unkmsg = "ceill(), floorl(), frexpl(), ldexpl() must be rewritten!\n";#undef UNK#define MIEEE 1#define EXPOFS 0#endif#ifdef IBMPC#define NBITS 113#define EXPOFS 7#endif#ifdef MIEEE#define NBITS 113#define EXPOFS 0#endifextern long double MAXNUML;long double fabsl(x)long double x;{if( x < 0 )        return( -x );else        return( x );}long double ceill(x)long double x;{long double y;long double floorl();#ifdef UNKmtherr( "ceill", DOMAIN );return(0.0L);#endify = floorl(x);if( y < x )        y += 1.0L;return(y);}/* Bit clearing masks: */static unsigned short bmask[] = {0xffff,0xfffe,0xfffc,0xfff8,0xfff0,0xffe0,0xffc0,0xff80,0xff00,0xfe00,0xfc00,0xf800,0xf000,0xe000,0xc000,0x8000,0x0000,};long double floorl(x)long double x;{union  {    long double y;    unsigned short sh[8];  } u;int e, j;#ifdef UNKmtherr( "floor", DOMAIN );return(0.0L);#endifu.y = x;/* find the exponent (power of 2) */e = (u.sh[EXPOFS] & 0x7fff) - 0x3fff;if( e < 0 )        {        if( u.y < 0 )                return( -1.0L );        else                return( 0.0L );        }#ifdef IBMPCj = 0;#endif#ifdef MIEEEj = 7;#endife = (NBITS - 1) - e;/* clean out 16 bits at a time */while( e >= 16 )        {#ifdef IBMPC        u.sh[j++] = 0;#endif#ifdef MIEEE        u.sh[j--] = 0;#endif        e -= 16;        }/* clear the remaining bits */if( e > 0 )        u.sh[j] &= bmask[e];if( (x < 0.0L) && (u.y != x) )        u.y -= 1.0L;return(u.y);}long double frexpl( x, pw2 )long double x;int *pw2;{union  {    long double y;    unsigned short sh[8];  } u;int i, k;u.y = x;#ifdef UNKmtherr( "frexp", DOMAIN );return(0.0L);#endif/* find the exponent (power of 2) */i  = u.sh[EXPOFS] & 0x7fff;if( i == 0 )        {        if( u.y == 0.0L )                {                *pw2 = 0;                return(0.0L);                }/* Number is denormal or zero */#if DENORMAL/* Handle denormal number. */do        {        u.y *= 2.0L;        i -= 1;        k  = u.sh[EXPOFS] & 0x7fff;        }while( (k == 0) && (i > -115) );i = i + k;#else        *pw2 = 0;        return(0.0L);#endif /* DENORMAL */        }*pw2 = i - 0x3ffe;u.sh[EXPOFS] = 0x3ffe;return( u.y );}long double ldexpl( x, pw2 )long double x;int pw2;{union  {    long double y;    unsigned short sh[8];  } u;long e;#ifdef UNKmtherr( "ldexp", DOMAIN );return(0.0L);#endifu.y = x;while( (e = (u.sh[EXPOFS] & 0x7fffL)) == 0 )        {#if DENORMAL        if( u.y == 0.0L )                {                return( 0.0L );                }/* Input is denormal. */        if( pw2 > 0 )                {                u.y *= 2.0L;                pw2 -= 1;                }        if( pw2 < 0 )                {                if( pw2 < -113 )                        return(0.0L);                u.y *= 0.5L;                pw2 += 1;                }        if( pw2 == 0 )                return(u.y);#else        return( 0.0L );#endif        }e = e + pw2;/* Handle overflow */if( e > 0x7ffeL )        {          e = u.sh[EXPOFS];          u.y = 0.0L;          u.sh[EXPOFS] = e | 0x7fff;          return( u.y );        }u.sh[EXPOFS] &= 0x8000;/* Handle denormalized results */if( e < 1 )        {#if DENORMAL        if( e < -113 )                return(0.0L);        u.sh[EXPOFS] |= 1;        while( e < 1 )                {                u.y *= 0.5L;                e += 1;                }        e = 0;#else        return(0.0L);#endif        }u.sh[EXPOFS] |= e & 0x7fff;return(u.y);}/* Return 1 if x is a number that is Not a Number, else return 0.  */int isnanl(x)long double x;{#ifdef NANSunion	{	long double d;	unsigned short s[8];	unsigned int i[4];	} u;u.d = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	    	if( ((u.s[7] & 0x7fff) == 0x7fff)	    && ((u.i[3] & 0x7fff) | u.i[2] | u.i[1] | u.i[0]))		return 1;#endif#ifdef MIEEE	if( ((u.i[0] & 0x7fff0000) == 0x7fff0000)	    && ((u.i[0] & 0x7fff) | u.i[1] | u.i[2] | u.i[3]))		return 1;#endif	return(0);	}else	{ /* size int not 4 */#ifdef IBMPC	if( (u.s[7] & 0x7fff) == 0x7fff)		{		if((u.s[6] & 0x7fff) | u.s[5] | u.s[4] | u.s[3] | u.s[2] | u.s[1] | u.s[0])			return(1);		}#endif#ifdef MIEEE	if( (u.s[0] & 0x7fff) == 0x7fff)		{		if((u.s[1] & 0x7fff) | (u.s[2] & 0x7fff) | u.s[3] | u.s[4] | u.s[5] | u.s[6] | u.s[7])			return(1);		}#endif	return(0);	} /* size int not 4 */#else/* No NANS.  */return(0);#endif}/* Return 1 if x is not infinite and is not a NaN.  */int isfinitel(x)long double x;{#ifdef INFINITIESunion	{	long double d;	unsigned short s[8];	unsigned int i[4];	} u;u.d = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	if( (u.s[7] & 0x7fff) != 0x7fff)		return 1;#endif#ifdef MIEEE	if( (u.i[0] & 0x7fff0000) != 0x7fff0000)		return 1;#endif	return(0);	}else	{#ifdef IBMPC	if( (u.s[7] & 0x7fff) != 0x7fff)		return 1;#endif#ifdef MIEEE	if( (u.s[0] & 0x7fff) != 0x7fff)		return 1;#endif	return(0);	}#else/* No INFINITY.  */return(1);#endif}/* Return 1 if the sign bit of x is 1, else 0.  */int signbitl(x)long double x;{union	{	long double d;	short s[8];	int i[4];	} u;u.d = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	return( u.s[7] < 0 );#endif#ifdef DECerror no such DEC format#endif#ifdef MIEEE	return( u.i[0] < 0 );#endif	}else	{#ifdef IBMPC	return( u.s[7] < 0 );#endif#ifdef DECerror no such DEC format#endif#ifdef MIEEE	return( u.s[0] < 0 );#endif	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -