⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 expll.c

📁 128位长双精度型数字运算包
💻 C
字号:
/*							expl.c * *	Exponential function, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * *     x    k  f *    e  = 2  e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      +-MAXLOG    100,000     2.6e-34     8.6e-35 * * * Error amplification in the exponential function can be * a serious matter.  The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * *   message         condition      value returned * exp underflow    x < MINLOG         0.0 * exp overflow     x > MAXLOG         MAXNUM * *//*Cephes Math Library Release 2.2:  December, 1990Copyright 1984, 1990 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//*	Exponential function	*/#include "mconf.h"static char fname[] = {"expl"};/* Pade' coefficients for exp(x) - 1   Theoretical peak relative error = 2.2e-37,   relative peak error spread = 9.2e-38 */static long double P[5] = { 3.279723985560247033712687707263393506266E-10L, 6.141506007208645008909088812338454698548E-7L, 2.708775201978218837374512615596512792224E-4L, 3.508710990737834361215404761139478627390E-2L, 9.999999999999999999999999999999999998502E-1L};static long double Q[6] = { 2.980756652081995192255342779918052538681E-12L, 1.771372078166251484503904874657985291164E-8L, 1.504792651814944826817779302637284053660E-5L, 3.611828913847589925056132680618007270344E-3L, 2.368408864814233538909747618894558968880E-1L, 2.000000000000000000000000000000000000150E0};/* C1 + C2 = ln 2 */static long double C1 = -6.93145751953125E-1L;static long double C2 = -1.428606820309417232121458176568075500134E-6L;extern long double LOG2EL, MAXLOGL, MINLOGL, MAXNUML;long double polevll(), floorl(), ldexpl();long double expl(x)long double x;{long double px, xx;int n;if( x > MAXLOGL)	{	mtherr( fname, OVERFLOW );	return( MAXNUML );	}if( x < MINLOGL )	{	mtherr( fname, UNDERFLOW );	return(0.0L);	}/* Express e**x = e**g 2**n *   = e**g e**( n loge(2) ) *   = e**( g + n loge(2) ) */px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */n = px;x += px * C1;x += px * C2;/* rational approximation for exponential * of the fractional part: * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */xx = x * x;px = x * polevll( xx, P, 4 );xx = polevll( xx, Q, 5 );x =  px/( xx - px );x = 1.0L + x + x;x = ldexpl( x, n );return(x);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -