📄 expll.c
字号:
/* expl.c * * Exponential function, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * *//*Cephes Math Library Release 2.2: December, 1990Copyright 1984, 1990 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//* Exponential function */#include "mconf.h"static char fname[] = {"expl"};/* Pade' coefficients for exp(x) - 1 Theoretical peak relative error = 2.2e-37, relative peak error spread = 9.2e-38 */static long double P[5] = { 3.279723985560247033712687707263393506266E-10L, 6.141506007208645008909088812338454698548E-7L, 2.708775201978218837374512615596512792224E-4L, 3.508710990737834361215404761139478627390E-2L, 9.999999999999999999999999999999999998502E-1L};static long double Q[6] = { 2.980756652081995192255342779918052538681E-12L, 1.771372078166251484503904874657985291164E-8L, 1.504792651814944826817779302637284053660E-5L, 3.611828913847589925056132680618007270344E-3L, 2.368408864814233538909747618894558968880E-1L, 2.000000000000000000000000000000000000150E0};/* C1 + C2 = ln 2 */static long double C1 = -6.93145751953125E-1L;static long double C2 = -1.428606820309417232121458176568075500134E-6L;extern long double LOG2EL, MAXLOGL, MINLOGL, MAXNUML;long double polevll(), floorl(), ldexpl();long double expl(x)long double x;{long double px, xx;int n;if( x > MAXLOGL) { mtherr( fname, OVERFLOW ); return( MAXNUML ); }if( x < MINLOGL ) { mtherr( fname, UNDERFLOW ); return(0.0L); }/* Express e**x = e**g 2**n * = e**g e**( n loge(2) ) * = e**( g + n loge(2) ) */px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */n = px;x += px * C1;x += px * C2;/* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */xx = x * x;px = x * polevll( xx, P, 4 );xx = polevll( xx, Q, 5 );x = px/( xx - px );x = 1.0L + x + x;x = ldexpl( x, n );return(x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -