⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tryrand3.cpp

📁 随机数生成程序
💻 CPP
字号:
#define WANT_STREAM#define WANT_MATH#include "include.h"#include "newran.h"#ifdef use_namespaceusing namespace NEWRAN;#endifvoid SortAscending(Real* data, int max);Real KS(Real* data, int n);Real NormalDF(Real x);double invchi95(int N);double invchi99(int N);void ChiSquaredTest(int* Observed, Real* Prob, int N, int n);void TestBinomial(int N, Real p, int n);void TestPoisson(Real mu, int n);void TestNegativeBinomial(Real NX, Real p, int n);void TestDiscreteGen(int N, Real* prob, int n);inline Real square(Real x) { return x*x; }inline Real cube(Real x) { return x*x*x; }void test3(int n){   cout << endl;   // Do chi-squared tests to discrete data   cout << "ChiSquared tests" << endl;   {      Real p[] = { 0.05, 0.10, 0.05, 0.5, 0.01, 0.01, 0.03, 0.20, 0.05 };      TestDiscreteGen(9, p, n);   }   {      Real p[] = { 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.00625, 0.2 };      TestDiscreteGen(9, p, n);   }   TestNegativeBinomial(200.3, 0.05, n);   TestNegativeBinomial(150.3, 0.15, n);   TestNegativeBinomial(100.8, 0.18, n);   TestNegativeBinomial(100.8, 1.22, n);   TestNegativeBinomial(100.8, 9.0, n);   TestNegativeBinomial(10.5, 0.18, n);   TestNegativeBinomial(10.5, 1.22, n);   TestNegativeBinomial(10.5, 9.0, n);   TestNegativeBinomial(0.35, 0.18, n);   TestNegativeBinomial(0.35, 1.22, n);   TestNegativeBinomial(0.35, 9.0, n);   TestBinomial(100, 0.45, n);   TestBinomial(100, 0.25, n);   TestBinomial(100, 0.02, n);   TestBinomial(100, 0.01, n);   TestBinomial(49, 0.60, n);   TestBinomial(21, 0.70, n);   TestBinomial(10, 0.90, n);   TestBinomial(10, 0.25, n);   TestBinomial(10, 0.10, n);   TestPoisson(0.75, n);   TestPoisson(4.3, n);   TestPoisson(10, n);   TestPoisson(100, n);   Real* data = new Real[n];   if (!data) Throw(Bad_alloc());// Apply KS test to a variety of continuous distributions//    - use cdf transform to convert to uniform   cout << endl;   cout << "Kolmogorov-Smirnoff tests" << endl;   cout << "25%, 5%, 1%, .1% upper points are 1.019, 1.358, 1.628, 1.950"      << endl;   cout << "5% lower point is 0.520" << endl;   {      ChiSq X(1, 1.44);      for (int i = 0; i < n; i++)      {         Real x = sqrt(X.Next());         data[i] = NormalDF(x - 1.2) - NormalDF(-x - 1.2);      }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      ChiSq X(4);      for (int i = 0; i < n; i++)         { Real x = 0.5 * X.Next(); data[i] = (1+x)*exp(-x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      ChiSq X(2);      for (int i = 0; i < n; i++) data[i] = exp(-0.5 * X.Next());      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Pareto X(0.5);      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = 1.0 / sqrt(x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Pareto X(1.5);      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = 1.0 / (x * sqrt(x)); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal X;      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = NormalDF(x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal N; SumRandom X = 10 + 5 * N;      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = NormalDF((x-10)/5); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal N; Cauchy C; MixedRandom X = N(0.9) + C(0.1);      for (int i = 0; i < n; i++)      {         Real x = X.Next();         data[i] = 0.9*NormalDF(x)+0.1*(atan(x)/3.141592654 + 0.5);      }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal N; MixedRandom X = N(0.9) + (10*N)(0.1);      for (int i = 0; i < n; i++)      {         Real x = X.Next();         data[i] = 0.9*NormalDF(x)+0.1*NormalDF(x/10);      }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal  X0; SumRandom X = X0 * 0.6 + X0 * 0.8;      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = NormalDF(x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Normal X1;      MixedRandom X = X1(0.2) + (X1 * 2.5 + 1.1)(0.35) + (X1 + 2.3)(0.45);      for (int i = 0; i < n; i++)      {         Real x = X.Next();         data[i] = 0.20 * NormalDF(x)                 + 0.35 * NormalDF((x - 1.1) / 2.5)                 + 0.45 * NormalDF(x - 2.3);      }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Gamma X(0.5);      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = 2.0 * NormalDF(-sqrt(2 * x)); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Gamma X(3);      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Gamma X1(0.85); Gamma X2(2.15); SumRandom X = X1 + X2;      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Gamma X1(0.75); Gamma X2(0.25); SumRandom X = X1 + X2;      for (int i = 0; i < n; i++) data[i] = exp(-X.Next());      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Gamma X(2);      for (int i = 0; i < n; i++)         { Real x = X.Next(); data[i] = (1+x)*exp(-x); }      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Exponential X;      for (int i = 0; i < n; i++) data[i] = exp(-X.Next());      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Cauchy X;      for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5;      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Cauchy X0; SumRandom X = X0 * 0.3 + X0 * 0.7;      for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5;      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   {      Uniform X;      for (int i = 0; i < n; i++) data[i] = X.Next();      cout << X.Name() << ":   "  << KS(data, n) << endl;   }   delete [] data;}/*************************** Kolmogorov Smirnov Test ************************/// test the data in the array (length n) for being uniform (0,1)Real KS(Real* data, int n){   SortAscending(data, n);   Real D = 0.0;   for (int i = 0; i < n; i++)   {      Real d1 = (Real)(i+1) / (Real)n - data[i];      Real d2 = data[i] - (Real)i / (Real)n;      if (D < d1) D = d1; if (D < d2) D = d2;   }   return D * (sqrt(n) + 0.12 + 0.11 / sqrt(n));}/******************************** Quick sort ********************************/// Quicksort.// Essentially the method described in Sedgewick's algorithms in C++// My version is still partially recursive, unlike Segewick's, but the// smallest segment of each split is used in the recursion, so it should// not overlead the stack.// If the process does not seems to be converging an exception is thrown.#define DoSimpleSort 17            // when to switch to insert sort#define MaxDepth 50                // maximum recursion depthstatic Real SortThreeDescending(Real* a, Real* b, Real* c);static void MyQuickSortAscending(Real* first, Real* last, int depth);static void InsertionSortAscending(Real* first, const int length, int guard);static Real SortThreeDescending(Real* a, Real* b, Real* c){   // sort *a, *b, *c; return *b; optimise for already sorted   if (*a >= *b)   {      if (*b >= *c) return *b;      else if (*a >= *c) { Real x = *c; *c = *b; *b = x; return x; }      else { Real x = *a; *a = *c; *c = *b; *b = x; return x; }   }   else if (*c >= *b) { Real x = *c; *c = *a; *a = x; return *b; }   else if (*a >= *c) { Real x = *a; *a = *b; *b = x; return x; }   else { Real x = *c; *c = *a; *a = *b; *b = x; return x; }}void SortAscending(Real* data, int max){   if (max > DoSimpleSort) MyQuickSortAscending(data, data + max - 1, 0);   InsertionSortAscending(data, max, DoSimpleSort);}static void InsertionSortAscending(Real* first, const int length,   int guard)// guard gives the length of the sequence to scan to find first// element (eg guard = length){   if (length <= 1) return;   // scan for first element   Real* f = first; Real v = *f; Real* h = f;   if (guard > length) guard = length; int i = guard - 1;   while (i--) if (v > *(++f)) { v = *f; h = f; }   *h = *first; *first = v;   // do the sort   i = length - 1; f = first;   while (i--)   {      Real* g = f++; h = f; v = *h;      while (*g > v) *h-- = *g--;      *h = v;   }}static void MyQuickSortAscending(Real* first, Real* last, int depth){   for (;;)   {      const int length = last - first + 1;      if (length < DoSimpleSort) return;      if (depth++ > MaxDepth)         Throw(Exception("QuickSortAscending fails"));      Real* centre = first + length/2;      const Real test = SortThreeDescending(last, centre, first);      Real* f = first; Real* l = last;      for (;;)      {         while (*(++f) < test) {}         while (*(--l) > test) {}         if (l <= f) break;         const Real temp = *f; *f = *l; *l = temp;      }      if (f > centre) { MyQuickSortAscending(l+1, last, depth); last = f-1; }      else { MyQuickSortAscending(first, f-1, depth); first = l+1; }   }}Real NormalDF(Real x){   // from Abramowitz and Stegun - accuracy 7.5E-8   // accuracy is absolute; not relative   // eventually will need a better method   // but good enough here   Real t = 1.0 / (1.0 + 0.2316419 * fabs(x));   t = ( 0.319381530     + (-0.356563782     + ( 1.781477937     + (-1.821255978     +   1.330274429 * t) * t) * t) * t) * t;   t = 0.3989422804014326779399461 * exp(-0.5 * x * x) * t;   return (x < 0) ? t : 1.0 - t;}void ChiSquaredTest(int* Observed, Real* Prob, int N, int n){   // go for at least two expected observations per cell   // work in from ends   if (N <= 0) { cout << "no categories" << endl; return; }   if (n <= 0) { cout << "no data" << endl; return; }   int O1 = 0; Real E1 = 0.0; int O2 = 0; Real E2 = 0.0;   Real CS = 0.0; int df = 0; int i = 0; int Ni = N; Real ToGo = n;   for (;;)   {      O1 += Observed[i]; Real e1 = n * Prob[i]; E1 += e1; ToGo -= e1;      if (E1 >= 2.0 && ToGo + E2 >= 2.0)         { CS += square(O1 - E1) / E1; df += 1; O1 = 0; E1 = 0.0; }      if (i == Ni) break;      ++i;      O2 += Observed[Ni]; Real e2 = n * Prob[Ni]; E2 += e2; ToGo -= e2;      if (E2 >= 2.0 && ToGo + E1 >= 2.0)         { CS += square(O2 - E2) / E2; df += 1; O2 = 0; E2 = 0.0; }      if (i == Ni) break;      --Ni;   }   E1 += E2; O1 += O2;   if (E1 > 0.0) { CS += square(O1 - E1) / E1; df += 1; }   if (fabs(ToGo) >= 0.01) cout << "chi-squared program fails  - ";   cout << "chisq = " << CS << "; df = " << (df-1)      << "; 95% pt. = " << invchi95(df-1)      << "; 99% pt. = " << invchi99(df-1) << endl;}void TestBinomial(int N, Real p, int n){   Binomial X(N, p);   Real q = 1.0 - p; Real ln_p = log(p); Real ln_q = log(q);   int* obs = new int [N+1]; if (!obs) Throw(Bad_alloc());   Real* prob = new Real [N+1]; if (!prob) Throw(Bad_alloc());   int i;   for (i = 0; i <= N; i++)   {      obs[i] = 0;      prob[i] = exp(ln_gamma(N+1) - ln_gamma(i+1) - ln_gamma(N-i+1)         + i * ln_p + (N-i) * ln_q);   }   for (i = 0; i < n; i++)   {      int b = (int)X.Next();      if (b < 0 || b > N) Throw(Logic_error("Binomial error"));      obs[b]++;   }   cout << "Binomial: "; ChiSquaredTest(obs, prob, N, n);   delete [] obs; delete [] prob;}void TestPoisson(Real mu, int n){   Poisson X(mu);   Real ln_mu = log(mu);   int N = (int)(20 + mu + 10 * sqrt(mu));         // set upper bound   if (N > n)   {      cout << "Poisson: range too large" << endl;      return;   }   int* obs = new int [N+1]; if (!obs) Throw(Bad_alloc());   Real* prob = new Real [N+1]; if (!prob) Throw(Bad_alloc());   int i;   for (i = 0; i <= N; i++)      { obs[i] = 0; prob[i] = exp(i * ln_mu - mu - ln_gamma(i+1)); }   for (i = 0; i < n; i++)   {      int b = (int)(X.Next());      if (b < 0 || b > N) Throw(Logic_error("Poisson error"));      obs[b]++;   }   cout << "Poisson: "; ChiSquaredTest(obs, prob, N, n);   delete [] obs; delete [] prob;}void TestNegativeBinomial(Real NX, Real P, int n){   NegativeBinomial X(NX, P);   Real Q = 1.0 + P; Real p = 1.0 / Q; Real q = 1.0 - p;   Real ln_p = log(p); Real ln_q = log(q);   Real mean = NX * P; Real var = mean * Q;   int N = (int)(20 + mean + 100 * sqrt(var));         // set upper bound      // won't be good enough for large P   if (N > n)   {      cout << "NegativeBinomial: range too large" << endl;      return;   }   int* obs = new int [N+1]; if (!obs) Throw(Bad_alloc());   Real* prob = new Real [N+1]; if (!prob) Throw(Bad_alloc());   int i;   for (i = 0; i <= N; i++)   {      obs[i] = 0;      prob[i] = exp(ln_gamma(NX+i) - ln_gamma(i+1) - ln_gamma(NX)         + NX * ln_p + i * ln_q);   }   for (i = 0; i < n; i++)   {      int b = (int)X.Next();      if (b < 0 || b > N) Throw(Logic_error("NegativeBinomial error"));      obs[b]++;   }   cout << "NegativeBinomial: "; ChiSquaredTest(obs, prob, N, n);   delete [] obs; delete [] prob;}void TestDiscreteGen(int N, Real* prob, int n){   DiscreteGen X(N, prob);   int* obs = new int [N]; if (!obs) Throw(Bad_alloc());   int i;   for (i = 0; i < N; i++) obs[i] = 0;   for (i = 0; i < n; i++)   {      int b = (int)X.Next();      if (b < 0 || b >= N) Throw(Logic_error("DiscreteGen error"));      obs[b]++;   }   cout << "DiscreteGen: "; ChiSquaredTest(obs, prob, N-1, n);   delete [] obs;}// Calculate 95% point of chi-squared distributiondouble invchi95(int N)// upper 95% point of chi-squared distribution{   if (N < 0) Throw(Logic_error("Error in invchi95 arg"));   if (N < 30)   {      double Q[] = { 0, 3.841459, 5.991465, 7.814728, 9.487729, 11.0705,         12.59159, 14.06714, 15.50731, 16.91898, 18.30704, 19.67506,         21.02601, 22.36199, 23.68475, 24.99576, 26.2962, 27.58709,         28.86928, 30.14351, 31.4104, 32.6705, 33.9244, 35.1725,         36.4151, 37.6525, 38.8852, 40.1133, 41.3372, 42.5569 };      return Q[N];   }   else   {      double A = 1.0/(4.5 * N); double H = (-0.0002 * 60)/N;      double Q = N * cube(1 - A + (1.645 - H) * sqrt(A));      return Q;   }}// Calculate 99% point of chi-squared distributiondouble invchi99(int N)// upper 99% point of chi-squared distribution{   if (N < 0) Throw(Logic_error("Error in invchi99 arg"));   if (N < 30)   {      double Q[] = { 0, 6.63490, 9.21034, 11.3449, 13.2767, 15.0863,         16.8119, 18.4753, 20.0902, 21.6660, 23.2093, 24.7250,         26.2170, 27.6883, 29.1413, 30.5779, 31.9999, 33.4087,         34.8053, 36.1908, 37.5662, 38.9321, 40.2894, 41.6384,         42.9798, 44.3141, 45.6417, 46.9630, 48.2782, 49.5879 };      return Q[N];   }   else   {      double A = 1.0/(4.5 * N); double H = (0.0008 * 60)/N;      double Q = N * cube(1 - A + (2.326 - H) * sqrt(A));      return Q;   }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -