⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tmt3.cpp

📁 各种矩阵算法库。支持UpperTriangularMatrix,LowerTriangularMatrix, DiagonalMatrix, SymmetricMatrix, BandMatrix,U
💻 CPP
字号:
//#define WANT_STREAM#include "include.h"#include "newmat.h"#include "tmt.h"#ifdef use_namespaceusing namespace NEWMAT;#endif/**************************** test program ******************************/void trymat3(){   Tracer et("Third test of Matrix package");   Tracer::PrintTrace();   {      Tracer et1("Stage 1");      int i,j;      SymmetricMatrix S(7);      for (i=1;i<=7;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j;		S=-S+2.0;      DiagonalMatrix D(7);      for (i=1;i<=7;i++) D(i,i)=S(i,i);      Matrix M4(7,7); { M4=D+(D+4.0); M4=M4-D*2.0;  M4=M4-4.0; Print(M4); }      SymmetricMatrix S2=D; Matrix M2=S2;  { M2=-D+M2; Print(M2); }      UpperTriangularMatrix U2=D; { M2=U2; M2=D-M2; Print(M2); }      LowerTriangularMatrix L2=D; { M2=L2; M2=D-M2; Print(M2); }      M2=D; M2=M2-D; Print(M2);      for (i=1;i<=7;i++) for (j=1;j<=i;j++) L2(i,j)=2.0-i*i-j;      U2=L2.t(); D=D.t(); S=S.t();      M4=(L2-1.0)+(U2+1.0)-D-S; Print(M4);      M4=(-L2+1.0)+(-U2-1.0)+D+S; Print(M4);   }   {      Tracer et1("Stage 2");      int i,j;      DiagonalMatrix D(6);      for (i=1;i<=6;i++) D(i,i)=i*3.0+i*i+2.0;      UpperTriangularMatrix U2(7); LowerTriangularMatrix L2(7);      for (i=1;i<=7;i++) for (j=1;j<=i;j++) L2(i,j)=2.0-i*i+j;		{ U2=L2.t(); }      DiagonalMatrix D1(7); for (i=1;i<=7;i++) D1(i,i)=(i-2)*(i-4);      Matrix M2(6,7);      for (i=1;i<=6;i++) for (j=1;j<=7;j++) M2(i,j)=2.0+i*j+i*i+2.0*j*j;      Matrix MD=D; SymmetricMatrix MD1(1); MD1=D1;      Matrix MX=MD*M2*MD1 - D*(M2*D1); Print(MX);      MX=MD*M2*MD1 - (D*M2)*D1; Print(MX);      {         D.ReSize(7); for (i=1;i<=7;i++) D(i,i)=i*3.0+i*i+2.0;         LowerTriangularMatrix LD(1); LD=D;         UpperTriangularMatrix UD(1); UD=D;         M2=U2; M2=LD*M2*MD1 - D*(U2*D1); Print(M2);         M2=U2; M2=UD*M2*MD1 - (D*U2)*D1; Print(M2);         M2=L2; M2=LD*M2*MD1 - D*(L2*D1); Print(M2);         M2=L2; M2=UD*M2*MD1 - (D*L2)*D1; Print(M2);      }   }   {      Tracer et1("Stage 3");      // test inverse * scalar      DiagonalMatrix D(6);      for (int i=1;i<=6;i++) D(i)=i*i;      DiagonalMatrix E = D.i() * 4.0;      DiagonalMatrix I(6); I = 1.0;      E=D*E-I*4.0; Print(E);      E = D.i() / 0.25; E=D*E-I*4.0; Print(E);   }   {      Tracer et1("Stage 4");      Matrix sigma(3,3); Matrix sigmaI(3,3);      sigma = 0; sigma(1,1) = 1.0; sigma(2,2) = 1.0; sigma(3,3) = 1.0;      sigmaI = sigma.i();      sigmaI -= sigma;  Clean(sigmaI, 0.000000001); Print(sigmaI);   }   {      Tracer et1("Stage 5");      Matrix X(5,5); DiagonalMatrix DM(5);      for (int i=1; i<=5; i++) for (int j=1; j<=5; j++)         X(i,j) = (23*i+59*j) % 43;      DM << 1 << 8 << -7 << 2 << 3;      Matrix Y = X.i() * DM; Y = X * Y - DM;      Clean(Y, 0.000000001); Print(Y);   }   {      Tracer et1("Stage 6");          // test reverse function      ColumnVector CV(10), RCV(10);      CV  <<  2 << 7 << 1  << 6 << -3 <<  1 << 8 << -4 << 0 << 17;      RCV << 17 << 0 << -4 << 8 << 1  << -3 << 6 <<  1 << 7 << 2;      ColumnVector X = CV - RCV.Reverse(); Print(X);      RowVector Y = CV.t() - RCV.t().Reverse(); Print(Y);      DiagonalMatrix D = CV.AsDiagonal() - RCV.AsDiagonal().Reverse();      Print(D);      X = CV & CV.Rows(1,9).Reverse();      ColumnVector Z(19);      Z.Rows(1,10) = RCV.Reverse(); Z.Rows(11,19) = RCV.Rows(2,10);      X -= Z; Print(X); Z -= Z.Reverse(); Print(Z);      Matrix A(3,3); A << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9;      Matrix B(3,3); B << 9 << 8 << 7 << 6 << 5 << 4 << 3 << 2 << 1;      Matrix Diff = A - B.Reverse(); Print(Diff);      Diff = (-A).Reverse() + B; Print(Diff);      UpperTriangularMatrix U;      U << A.Reverse(); Diff = U; U << B; Diff -= U; Print(Diff);      U << (-A).Reverse(); Diff = U; U << B; Diff += U; Print(Diff);   }   {      Tracer et1("Stage 7");           // test IsSingular function      ColumnVector XX(4);      Matrix A(3,3);      A = 0;      CroutMatrix B1 = A;      XX(1) = B1.IsSingular() ? 0 : 1;      A << 1 << 3 << 6        << 7 << 11 << 13        << 2 << 4  << 1;      CroutMatrix B2(A);      XX(2) = B2.IsSingular() ? 1 : 0;      BandMatrix C(3,1,1); C.Inject(A);      BandLUMatrix B3(C);      XX(3) = B3.IsSingular() ? 1 : 0;      C = 0;      BandLUMatrix B4(C);      XX(4) = B4.IsSingular() ? 0 : 1;      Print(XX);   }   {      Tracer et1("Stage 8");           // inverse with vector of 0s      Matrix A(3,3); Matrix Z(3,3); ColumnVector X(6);      A <<  1 <<  3 <<  6        <<  7 << 11 << 13        <<  2 <<  4 <<  1;      Z = 0;      Matrix B = (A | Z) & (Z | A);   // 6 * 6 matrix      X = 0.0;      X = B.i() * X;      Print(X);      // also check inverse with non-zero Y      Matrix Y(3,3);      Y << 0.0 << 1.0 << 1.0        << 5.0 << 0.0 << 5.0        << 3.0 << 3.0 << 0.0;      Matrix YY = Y & Y;        // stack Y matrices      YY = B.i() * YY;      Matrix Y1 = A.i() * Y;      YY -= Y1 & Y1; Clean(YY, 0.000000001); Print(YY);      Y1 = A * Y1 - Y; Clean(Y1, 0.000000001); Print(Y1);   }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -