📄 lzz_pxfactoring.h
字号:
#ifndef NTL_zz_pXFactoring__H#define NTL_zz_pXFactoring__H#include <NTL/lzz_p.h>#include <NTL/lzz_pX.h>#include <NTL/pair_lzz_pX_long.h>NTL_OPEN_NNS/************************************************************ factorization routines ************************************************************/void SquareFreeDecomp(vec_pair_zz_pX_long& u, const zz_pX& f);inline vec_pair_zz_pX_long SquareFreeDecomp(const zz_pX& f) { vec_pair_zz_pX_long x; SquareFreeDecomp(x, f); return x; }// Performs square-free decomposition.// f must be monic.// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).// The list is is increasing order of i, with trivial terms// (i.e., g_i = 1) deleted.void FindRoots(vec_zz_p& x, const zz_pX& f);inline vec_zz_p FindRoots(const zz_pX& f) { vec_zz_p x; FindRoots(x, f); return x; }// f is monic, and has deg(f) distinct roots.// returns the list of rootsvoid FindRoot(zz_p& root, const zz_pX& f);inline zz_p FindRoot(const zz_pX& f) { zz_p x; FindRoot(x, f); return x; }// finds a single root of ff.// assumes that f is monic and splits into distinct linear factorsvoid SFBerlekamp(vec_zz_pX& factors, const zz_pX& f, long verbose=0);inline vec_zz_pX SFBerlekamp(const zz_pX& f, long verbose=0) { vec_zz_pX x; SFBerlekamp(x, f, verbose); return x; }// Assumes f is square-free and monic.// returns list of factors of f.// Uses "Berlekamp" appraoch.void berlekamp(vec_pair_zz_pX_long& factors, const zz_pX& f, long verbose=0);inline vec_pair_zz_pX_long berlekamp(const zz_pX& f, long verbose=0) { vec_pair_zz_pX_long x; berlekamp(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Berlekamp" appraoch.extern long zz_pX_BlockingFactor;// Controls GCD blocking for DDF.void DDF(vec_pair_zz_pX_long& factors, const zz_pX& f, const zz_pX& h, long verbose=0);inline vec_pair_zz_pX_long DDF(const zz_pX& f, const zz_pX& h, long verbose=0) { vec_pair_zz_pX_long x; DDF(x, f, h, verbose); return x; }// Performs distinct-degree factorization.// Assumes f is monic and square-free, and h = X^p mod f// Obsolete: see NewDDF, below.extern long zz_pX_GCDTableSize; /* = 4 */// Controls GCD blocking for NewDDFvoid NewDDF(vec_pair_zz_pX_long& factors, const zz_pX& f, const zz_pX& h, long verbose=0);inline vec_pair_zz_pX_long NewDDF(const zz_pX& f, const zz_pX& h, long verbose=0) { vec_pair_zz_pX_long x; NewDDF(x, f, h, verbose); return x; }// same as above, but uses baby-step/giant-step methodvoid EDF(vec_zz_pX& factors, const zz_pX& f, const zz_pX& b, long d, long verbose=0);inline vec_zz_pX EDF(const zz_pX& f, const zz_pX& b, long d, long verbose=0) { vec_zz_pX x; EDF(x, f, b, d, verbose); return x; }// Performs equal-degree factorization.// f is monic, square-free, and all irreducible factors have same degree.// b = X^p mod f.// d = degree of irreducible factors of f// Space for the trace-map computation can be controlled via ComposeBound.void RootEDF(vec_zz_pX& factors, const zz_pX& f, long verbose=0);inline vec_zz_pX RootEDF(const zz_pX& f, long verbose=0) { vec_zz_pX x; RootEDF(x, f, verbose); return x; }// EDF for d==1void SFCanZass(vec_zz_pX& factors, const zz_pX& f, long verbose=0);inline vec_zz_pX SFCanZass(const zz_pX& f, long verbose=0) { vec_zz_pX x; SFCanZass(x, f, verbose); return x; }// Assumes f is square-free.// returns list of factors of f.// Uses "Cantor/Zassenhaus" approach.void SFCanZass1(vec_pair_zz_pX_long& u, zz_pX& h, const zz_pX& f, long verbose=0);// Not intended for general use.void SFCanZass2(vec_zz_pX& factors, const vec_pair_zz_pX_long& u, const zz_pX& h, long verbose=0);// Not intended for general use.void CanZass(vec_pair_zz_pX_long& factors, const zz_pX& f, long verbose=0);inline vec_pair_zz_pX_long CanZass(const zz_pX& f, long verbose=0) { vec_pair_zz_pX_long x; CanZass(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Cantor/Zassenhaus" approach.void mul(zz_pX& f, const vec_pair_zz_pX_long& v);inline zz_pX mul(const vec_pair_zz_pX_long& v) { zz_pX x; mul(x, v); return x; }// multiplies polynomials, with multiplicities/************************************************************* irreducible poly's: tests and constructions**************************************************************/long ProbIrredTest(const zz_pX& f, long iter=1);// performs a fast, probabilistic irreduciblity test// the test can err only if f is reducible, and the// error probability is bounded by p^{-iter}.long DetIrredTest(const zz_pX& f);// performs a recursive deterministic irreducibility test// fast in the worst-case (when input is irreducible).long IterIrredTest(const zz_pX& f);// performs an iterative deterministic irreducibility test,// based on DDF. Fast on average (when f has a small factor).void BuildIrred(zz_pX& f, long n);inline zz_pX BuildIrred_zz_pX(long n) { zz_pX x; BuildIrred(x, n); NTL_OPT_RETURN(zz_pX, x); }// Build a monic irreducible poly of degree n.void BuildRandomIrred(zz_pX& f, const zz_pX& g);inline zz_pX BuildRandomIrred(const zz_pX& g) { zz_pX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(zz_pX, x); }// g is a monic irreducible polynomial.// constructs a random monic irreducible polynomial f of the same degree.long ComputeDegree(const zz_pX& h, const zz_pXModulus& F);// f = F.f is assumed to be an "equal degree" polynomial// h = X^p mod f// the common degree of the irreducible factors of f is computed// This routine is useful in counting points on elliptic curveslong ProbComputeDegree(const zz_pX& h, const zz_pXModulus& F);// same as above, but uses a slightly faster probabilistic algorithm// the return value may be 0 or may be too big, but for large p// (relative to n), this happens with very low probability.void TraceMap(zz_pX& w, const zz_pX& a, long d, const zz_pXModulus& F, const zz_pX& b);inline zz_pX TraceMap(const zz_pX& a, long d, const zz_pXModulus& F, const zz_pX& b) { zz_pX x; TraceMap(x, a, d, F, b); return x; }// w = a+a^q+...+^{q^{d-1}} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see "zz_pX.h")void PowerCompose(zz_pX& w, const zz_pX& a, long d, const zz_pXModulus& F);inline zz_pX PowerCompose(const zz_pX& a, long d, const zz_pXModulus& F) { zz_pX x; PowerCompose(x, a, d, F); return x; }// w = X^{q^d} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see "zz_pX.h")NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -