📄 mat_rr.h
字号:
#ifndef NTL_mat_RR__H#define NTL_mat_RR__H#include <NTL/matrix.h>#include <NTL/vec_vec_RR.h>NTL_OPEN_NNSNTL_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_io_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_eq_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)void add(mat_RR& X, const mat_RR& A, const mat_RR& B); void sub(mat_RR& X, const mat_RR& A, const mat_RR& B); void negate(mat_RR& X, const mat_RR& A);void mul(mat_RR& X, const mat_RR& A, const mat_RR& B); void mul(vec_RR& x, const mat_RR& A, const vec_RR& b); void mul(vec_RR& x, const vec_RR& a, const mat_RR& B); void mul(mat_RR& X, const mat_RR& A, const RR& b);void mul(mat_RR& X, const mat_RR& A, double b);inline void mul(mat_RR& X, const RR& a, const mat_RR& B) { mul(X, B, a); }inline void mul(mat_RR& X, double a, const mat_RR& B) { mul(X, B, a); }void ident(mat_RR& X, long n); inline mat_RR ident_mat_RR(long n) { mat_RR X; ident(X, n); NTL_OPT_RETURN(mat_RR, X); }void determinant(RR& d, const mat_RR& A);long IsIdent(const mat_RR& A, long n);void transpose(mat_RR& X, const mat_RR& A);void solve(RR& d, vec_RR& X, const mat_RR& A, const vec_RR& b);void inv(RR& d, mat_RR& X, const mat_RR& A);inline void sqr(mat_RR& X, const mat_RR& A) { mul(X, A, A); }inline mat_RR sqr(const mat_RR& A) { mat_RR X; sqr(X, A); NTL_OPT_RETURN(mat_RR, X); }void inv(mat_RR& X, const mat_RR& A);inline mat_RR inv(const mat_RR& A) { mat_RR X; inv(X, A); NTL_OPT_RETURN(mat_RR, X); }void power(mat_RR& X, const mat_RR& A, const ZZ& e);inline mat_RR power(const mat_RR& A, const ZZ& e) { mat_RR X; power(X, A, e); NTL_OPT_RETURN(mat_RR, X); }inline void power(mat_RR& X, const mat_RR& A, long e) { power(X, A, ZZ_expo(e)); }inline mat_RR power(const mat_RR& A, long e) { mat_RR X; power(X, A, e); NTL_OPT_RETURN(mat_RR, X); }void diag(mat_RR& X, long n, const RR& d);inline mat_RR diag(long n, const RR& d) { mat_RR X; diag(X, n, d); NTL_OPT_RETURN(mat_RR, X); }long IsDiag(const mat_RR& A, long n, const RR& d);// miscellaneous:RR determinant(const mat_RR& a);// functional variant of determinantinline mat_RR transpose(const mat_RR & a) { mat_RR x; transpose(x, a); NTL_OPT_RETURN(mat_RR, x); }void clear(mat_RR& a);// x = 0 (dimension unchanged)long IsZero(const mat_RR& a);// test if a is the zero matrix (any dimension)// operator notation:mat_RR operator+(const mat_RR& a, const mat_RR& b);mat_RR operator-(const mat_RR& a, const mat_RR& b);mat_RR operator*(const mat_RR& a, const mat_RR& b);mat_RR operator-(const mat_RR& a);// matrix/vector multiplication:vec_RR operator*(const mat_RR& a, const vec_RR& b);vec_RR operator*(const vec_RR& a, const mat_RR& b);// matrix/scalar multiplication:inline mat_RR operator*(const mat_RR& a, const RR& b) { mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }inline mat_RR operator*(const mat_RR& a, double b) { mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }inline mat_RR operator*(const RR& a, const mat_RR& b) { mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }inline mat_RR operator*(double a, const mat_RR& b) { mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }// assignment operator notation:inline mat_RR& operator+=(mat_RR& x, const mat_RR& a){ add(x, x, a); return x;} inline mat_RR& operator-=(mat_RR& x, const mat_RR& a){ sub(x, x, a); return x;} inline mat_RR& operator*=(mat_RR& x, const mat_RR& a){ mul(x, x, a); return x;} inline mat_RR& operator*=(mat_RR& x, const RR& a){ mul(x, x, a); return x;} inline mat_RR& operator*=(mat_RR& x, double a){ mul(x, x, a); return x;} inline vec_RR& operator*=(vec_RR& x, const mat_RR& a){ mul(x, x, a); return x;} NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -