⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lzz_pexfactoring.txt

📁 数值算法库for Unix
💻 TXT
字号:
/**************************************************************************\MODULE: zz_pEXFactoringSUMMARY:Routines are provided for factorization of polynomials over zz_pE, aswell as routines for related problems such as testing irreducibilityand constructing irreducible polynomials of given degree.\**************************************************************************/#include <NTL/lzz_pEX.h>#include <NTL/pair_lzz_pEX_long.h>void SquareFreeDecomp(vec_pair_zz_pEX_long& u, const zz_pEX& f);vec_pair_zz_pEX_long SquareFreeDecomp(const zz_pEX& f);// Performs square-free decomposition.  f must be monic.  If f =// prod_i g_i^i, then u is set to a list of pairs (g_i, i).  The list// is is increasing order of i, with trivial terms (i.e., g_i = 1)// deleted.void FindRoots(vec_zz_pE& x, const zz_pEX& f);vec_zz_pE FindRoots(const zz_pEX& f);// f is monic, and has deg(f) distinct roots.  returns the list of// rootsvoid FindRoot(zz_pE& root, const zz_pEX& f);zz_pE FindRoot(const zz_pEX& f);// finds a single root of f.  assumes that f is monic and splits into// distinct linear factorsvoid NewDDF(vec_pair_zz_pEX_long& factors, const zz_pEX& f,             const zz_pEX& h, long verbose=0);vec_pair_zz_pEX_long NewDDF(const zz_pEX& f, const zz_pEX& h,         long verbose=0);// This computes a distinct-degree factorization.  The input must be// monic and square-free.  factors is set to a list of pairs (g, d),// where g is the product of all irreducible factors of f of degree d.// Only nontrivial pairs (i.e., g != 1) are included.  The polynomial// h is assumed to be equal to X^{zz_pE::cardinality()} mod f.// This routine implements the baby step/giant step algorithm// of [Kaltofen and Shoup, STOC 1995].// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].// NOTE: When factoring "large" polynomials,// this routine uses external files to store some intermediate// results, which are removed if the routine terminates normally.// These files are stored in the current directory under names of the// form ddf-*-baby-* and ddf-*-giant-*.// The definition of "large" is controlled by the variable      extern double zz_pEXFileThresh// which can be set by the user.  If the sizes of the tables// exceeds zz_pEXFileThresh KB, external files are used.// Initial value is 256.void EDF(vec_zz_pEX& factors, const zz_pEX& f, const zz_pEX& h,         long d, long verbose=0);vec_zz_pEX EDF(const zz_pEX& f, const zz_pEX& h,         long d, long verbose=0);// Performs equal-degree factorization.  f is monic, square-free, and// all irreducible factors have same degree.  h = X^{zz_pE::cardinality()} mod// f.  d = degree of irreducible factors of f.  This routine// implements the algorithm of [von zur Gathen and Shoup,// Computational Complexity 2:187-224, 1992]void RootEDF(vec_zz_pEX& factors, const zz_pEX& f, long verbose=0);vec_zz_pEX RootEDF(const zz_pEX& f, long verbose=0);// EDF for d==1void SFCanZass(vec_zz_pEX& factors, const zz_pEX& f, long verbose=0);vec_zz_pEX SFCanZass(const zz_pEX& f, long verbose=0);// Assumes f is monic and square-free.  returns list of factors of f.// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and// EDF above.void CanZass(vec_pair_zz_pEX_long& factors, const zz_pEX& f,              long verbose=0);vec_pair_zz_pEX_long CanZass(const zz_pEX& f, long verbose=0);// returns a list of factors, with multiplicities.  f must be monic.// Calls SquareFreeDecomp and SFCanZass.// NOTE: these routines use modular composition.  The space// used for the required tables can be controlled by the variable// zz_pEXArgBound (see zz_pEX.txt).void mul(zz_pEX& f, const vec_pair_zz_pEX_long& v);zz_pEX mul(const vec_pair_zz_pEX_long& v);// multiplies polynomials, with multiplicities/**************************************************************************\                            Irreducible Polynomials\**************************************************************************/long ProbIrredTest(const zz_pEX& f, long iter=1);// performs a fast, probabilistic irreduciblity test.  The test can// err only if f is reducible, and the error probability is bounded by// zz_pE::cardinality()^{-iter}.  This implements an algorithm from [Shoup,// J. Symbolic Comp. 17:371-391, 1994].long DetIrredTest(const zz_pEX& f);// performs a recursive deterministic irreducibility test.  Fast in// the worst-case (when input is irreducible).  This implements an// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].long IterIrredTest(const zz_pEX& f);// performs an iterative deterministic irreducibility test, based on// DDF.  Fast on average (when f has a small factor).void BuildIrred(zz_pEX& f, long n);zz_pEX BuildIrred_zz_pEX(long n);// Build a monic irreducible poly of degree n. void BuildRandomIrred(zz_pEX& f, const zz_pEX& g);zz_pEX BuildRandomIrred(const zz_pEX& g);// g is a monic irreducible polynomial.  Constructs a random monic// irreducible polynomial f of the same degree.long IterComputeDegree(const zz_pEX& h, const zz_pEXModulus& F);// f is assumed to be an "equal degree" polynomial, and h =// X^{zz_pE::cardinality()} mod f.  The common degree of the irreducible // factors of f is computed.  Uses a "baby step/giant step" algorithm, similar// to NewDDF.  Although asymptotocally slower than RecComputeDegree// (below), it is faster for reasonably sized inputs.long RecComputeDegree(const zz_pEX& h, const zz_pEXModulus& F);// f is assumed to be an "equal degree" polynomial, // h = X^{zz_pE::cardinality()} mod f.  // The common degree of the irreducible factors of f is// computed Uses a recursive algorithm similar to DetIrredTest.void TraceMap(zz_pEX& w, const zz_pEX& a, long d, const zz_pEXModulus& F,              const zz_pEX& h);zz_pEX TraceMap(const zz_pEX& a, long d, const zz_pEXModulus& F,              const zz_pEX& h);// Computes w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0,// and h = X^q mod f, q a power of zz_pE::cardinality().  This routine// implements an algorithm from [von zur Gathen and Shoup,// Computational Complexity 2:187-224, 1992]void PowerCompose(zz_pEX& w, const zz_pEX& h, long d, const zz_pEXModulus& F);zz_pEX PowerCompose(const zz_pEX& h, long d, const zz_pEXModulus& F);// Computes w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q// mod f, q a power of zz_pE::cardinality().  This routine implements an// algorithm from [von zur Gathen and Shoup, Computational Complexity// 2:187-224, 1992]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -