⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lll_rr.cpp

📁 数值算法库for Windows
💻 CPP
📖 第 1 页 / 共 2 页
字号:


#include <NTL/LLL.h>
#include <NTL/fileio.h>

#include <NTL/new.h>

NTL_START_IMPL




static void RowTransform(vec_ZZ& A, vec_ZZ& B, const ZZ& MU1)
// x = x - y*MU
{
   static ZZ T, MU;
   long k;

   long n = A.length();
   long i;

   MU = MU1;

   if (MU == 1) {
      for (i = 1; i <= n; i++)
         sub(A(i), A(i), B(i));

      return;
   }

   if (MU == -1) {
      for (i = 1; i <= n; i++)
         add(A(i), A(i), B(i));

      return;
   }

   if (MU == 0) return;

   if (NumTwos(MU) >= NTL_ZZ_NBITS) 
      k = MakeOdd(MU);
   else
      k = 0;


   if (MU.WideSinglePrecision()) {
      long mu1;
      conv(mu1, MU);

      for (i = 1; i <= n; i++) {
         mul(T, B(i), mu1);
         if (k > 0) LeftShift(T, T, k);
         sub(A(i), A(i), T);
      }
   }
   else {
      for (i = 1; i <= n; i++) {
         mul(T, B(i), MU);
         if (k > 0) LeftShift(T, T, k);
         sub(A(i), A(i), T);
      }
   }
}

static void RowTransform2(vec_ZZ& A, vec_ZZ& B, const ZZ& MU1)
// x = x + y*MU
{
   static ZZ T, MU;
   long k;

   long n = A.length();
   long i;

   MU = MU1;

   if (MU == 1) {
      for (i = 1; i <= n; i++)
         add(A(i), A(i), B(i));

      return;
   }

   if (MU == -1) {
      for (i = 1; i <= n; i++)
         sub(A(i), A(i), B(i));

      return;
   }

   if (MU == 0) return;

   if (NumTwos(MU) >= NTL_ZZ_NBITS) 
      k = MakeOdd(MU);
   else
      k = 0;

   if (MU.WideSinglePrecision()) {
      long mu1;
      conv(mu1, MU);

      for (i = 1; i <= n; i++) {
         mul(T, B(i), mu1);
         if (k > 0) LeftShift(T, T, k);
         add(A(i), A(i), T);
      }
   }
   else {
      for (i = 1; i <= n; i++) {
         mul(T, B(i), MU);
         if (k > 0) LeftShift(T, T, k);
         add(A(i), A(i), T);
      }
   }
}

void ComputeGS(const mat_ZZ& B, mat_RR& B1, 
               mat_RR& mu, vec_RR& b, 
               vec_RR& c, long k, const RR& bound, long st, 
               vec_RR& buf, const RR& bound2)
{
   long i, j;
   RR s, t, t1;
   ZZ T1;

   if (st < k) {
      for (i = 1; i < st; i++)
         mul(buf(i), mu(k,i), c(i));
   }

   for (j = st; j <= k-1; j++) {
      InnerProduct(s, B1(k), B1(j));

      sqr(t1, s);
      mul(t1, t1, bound);
      mul(t, b(k), b(j));

      if (t >= bound2 && t >= t1) {
         InnerProduct(T1, B(k), B(j));
         conv(s, T1);
      }

      clear(t1);
      for (i = 1; i <= j-1; i++) {
         mul(t, mu(j, i), buf(i));
         add(t1, t1, t);
      }

      sub(t, s, t1);
      buf(j) = t;
      div(mu(k, j), t, c(j));
   }


   clear(s);
   for (j = 1; j <= k-1; j++) {
      mul(t, mu(k, j), buf(j));
      add(s, s, t);
   }

   sub(c(k), b(k), s);
}

static RR red_fudge;
static long log_red = 0;

static void init_red_fudge()
{
   log_red = long(0.50*RR::precision());

   power2(red_fudge, -log_red);
}

static void inc_red_fudge()
{

   mul(red_fudge, red_fudge, 2);
   log_red--;

   cerr << "LLL_RR: warning--relaxing reduction (" << log_red << ")\n";

   if (log_red < 4)
      Error("LLL_RR: can not continue...sorry");
}




static long verbose = 0;

static unsigned long NumSwaps = 0;
static double StartTime = 0;
static double LastTime = 0;



static void LLLStatus(long max_k, double t, long m, const mat_ZZ& B)
{
   cerr << "---- LLL_RR status ----\n";
   cerr << "elapsed time: ";
   PrintTime(cerr, t-StartTime);
   cerr << ", stage: " << max_k;
   cerr << ", rank: " << m;
   cerr << ", swaps: " << NumSwaps << "\n";

   ZZ t1;
   long i;
   double prodlen = 0;

   for (i = 1; i <= m; i++) {
      InnerProduct(t1, B(i), B(i));
      if (!IsZero(t1))
         prodlen += log(t1);
   }

   cerr << "log of prod of lengths: " << prodlen/(2.0*log(2.0)) << "\n";

   if (LLLDumpFile) {
      cerr << "dumping to " << LLLDumpFile << "...";

      ofstream f;
      OpenWrite(f, LLLDumpFile);
      
      f << "[";
      for (i = 1; i <= m; i++) {
         f << B(i) << "\n";
      }
      f << "]\n";

      f.close();

      cerr << "\n";
   }

   LastTime = t;
   
}



static
long ll_LLL_RR(mat_ZZ& B, mat_ZZ* U, const RR& delta, long deep, 
           LLLCheckFct check, mat_RR& B1, mat_RR& mu, 
           vec_RR& b, vec_RR& c, long m, long init_k, long &quit)
{
   long n = B.NumCols();

   long i, j, k, Fc1;
   ZZ MU;
   RR mu1, t1, t2, cc;
   ZZ T1;

   RR bound;

      // we tolerate a 15% loss of precision in computing
      // inner products in ComputeGS.

   power2(bound, 2*long(0.15*RR::precision()));


   RR bound2;

   power2(bound2, 2*RR::precision());


   quit = 0;
   k = init_k;

   vec_long st_mem;
   st_mem.SetLength(m+2);
   long *st = st_mem.elts();

   for (i = 1; i < k; i++)
      st[i] = i;

   for (i = k; i <= m+1; i++)
      st[i] = 1;

   vec_RR buf;
   buf.SetLength(m);

   long rst;
   long counter;

   long trigger_index;
   long small_trigger;
   long cnt;

   RR half;
   conv(half,  0.5);
   RR half_plus_fudge;
   add(half_plus_fudge, half, red_fudge);

   long max_k = 0;
   double tt;

   while (k <= m) {

      if (k > max_k) {
         max_k = k;
      }

      if (verbose) {
         tt = GetTime();

         if (tt > LastTime + LLLStatusInterval)
            LLLStatus(max_k, tt, m, B);
      }


      if (st[k] == k)
         rst = 1;
      else
         rst = k;

      if (st[k] < st[k+1]) st[k+1] = st[k];
      ComputeGS(B, B1, mu, b, c, k, bound, st[k], buf, bound2);
      st[k] = k;

      counter = 0;
      trigger_index = k;
      small_trigger = 0;
      cnt = 0;

      do {
         // size reduction

         counter++;
         if (counter > 10000) {
            cerr << "LLL_XD: warning--possible infinite loop\n";
            counter = 0;
         }


         Fc1 = 0;

         for (j = rst-1; j >= 1; j--) {
            abs(t1, mu(k,j));
            if (t1 > half_plus_fudge) {

               if (!Fc1) {
                  if (j > trigger_index ||
                      (j == trigger_index && small_trigger)) {

                     cnt++;

                     if (cnt > 10) {
                        inc_red_fudge();
                        add(half_plus_fudge, half, red_fudge);
                        cnt = 0;
                     }
                  }

                  trigger_index = j;
                  small_trigger = (t1 < 4);
               }

               Fc1 = 1;
   
               mu1 = mu(k,j);
               if (sign(mu1) >= 0) {
                  sub(mu1, mu1, half);
                  ceil(mu1, mu1);
               }
               else {
                  add(mu1, mu1, half);
                  floor(mu1, mu1);
               }

               if (mu1 == 1) {
                  for (i = 1; i <= j-1; i++)
                     sub(mu(k,i), mu(k,i), mu(j,i));
               }
               else if (mu1 == -1) {
                  for (i = 1; i <= j-1; i++)
                     add(mu(k,i), mu(k,i), mu(j,i));
               }
               else {
                  for (i = 1; i <= j-1; i++) {
                     mul(t2, mu1, mu(j,i));
                     sub(mu(k,i), mu(k,i), t2);
                  }
               }

   
               conv(MU, mu1);

               sub(mu(k,j), mu(k,j), mu1);
   
               RowTransform(B(k), B(j), MU);
               if (U) RowTransform((*U)(k), (*U)(j), MU);
            }
         }

         if (Fc1) {
            for (i = 1; i <= n; i++)
               conv(B1(k, i), B(k, i));
   
            InnerProduct(b(k), B1(k), B1(k));
            ComputeGS(B, B1, mu, b, c, k, bound, 1, buf, bound2);
         }
      } while (Fc1);

      if (check && (*check)(B(k))) 
         quit = 1;

      if (IsZero(b(k))) {
         for (i = k; i < m; i++) {
            // swap i, i+1
            swap(B(i), B(i+1));
            swap(B1(i), B1(i+1));
            swap(b(i), b(i+1));
            if (U) swap((*U)(i), (*U)(i+1));
         }

         for (i = k; i <= m+1; i++) st[i] = 1;

         m--;
         if (quit) break;
         continue;
      }

      if (quit) break;

      if (deep > 0) {
         // deep insertions
   
         cc = b(k);
         long l = 1;
         while (l <= k-1) { 
            mul(t1, delta, c(l));
            if (t1 > cc) break;
            sqr(t1, mu(k,l));
            mul(t1, t1, c(l));
            sub(cc, cc, t1);
            l++;
         }
   
         if (l <= k-1 && (l <= deep || k-l <= deep)) {
            // deep insertion at position l
   
            for (i = k; i > l; i--) {
               // swap rows i, i-1
               swap(B(i), B(i-1));
               swap(B1(i), B1(i-1));
               swap(mu(i), mu(i-1));
               swap(b(i), b(i-1));
               if (U) swap((*U)(i), (*U)(i-1));
            }
   
            k = l;
            continue;
         }
      } // end deep insertions

      // test LLL reduction condition

      if (k <= 1) {
         k++;
      }
      else {
         sqr(t1, mu(k,k-1));
         mul(t1, t1, c(k-1));
         add(t1, t1, c(k));
         mul(t2, delta, c(k-1));
         if (t2 > t1) {
            // swap rows k, k-1
            swap(B(k), B(k-1));
            swap(B1(k), B1(k-1));
            swap(mu(k), mu(k-1));
            swap(b(k), b(k-1));
            if (U) swap((*U)(k), (*U)(k-1));
   
            k--;
            NumSwaps++;
         }
         else {
            k++;
         }
      }
   }

   if (verbose) {
      LLLStatus(m+1, GetTime(), m, B);
   }


   return m;
}

static
long LLL_RR(mat_ZZ& B, mat_ZZ* U, const RR& delta, long deep, 
           LLLCheckFct check)
{
   long m = B.NumRows();
   long n = B.NumCols();

   long i, j;
   long new_m, dep, quit;
   RR s;
   ZZ MU;
   RR mu1;

   RR t1;
   ZZ T1;

   init_red_fudge();

   if (U) ident(*U, m);

   mat_RR B1;  // approximates B
   B1.SetDims(m, n);


   mat_RR mu;
   mu.SetDims(m, m);

   vec_RR c;  // squared lengths of Gramm-Schmidt basis vectors
   c.SetLength(m);

   vec_RR b; // squared lengths of basis vectors
   b.SetLength(m);


   for (i = 1; i <=m; i++)
      for (j = 1; j <= n; j++) 
         conv(B1(i, j), B(i, j));


         
   for (i = 1; i <= m; i++) {
      InnerProduct(b(i), B1(i), B1(i));
   }


   new_m = ll_LLL_RR(B, U, delta, deep, check, B1, mu, b, c, m, 1, quit);
   dep = m - new_m;
   m = new_m;

   if (dep > 0) {
      // for consistency, we move all of the zero rows to the front

      for (i = 0; i < m; i++) {
         swap(B(m+dep-i), B(m-i));
         if (U) swap((*U)(m+dep-i), (*U)(m-i));
      }
   }


   return m;
}

         

long LLL_RR(mat_ZZ& B, double delta, long deep, 
            LLLCheckFct check, long verb)
{
   verbose = verb;
   NumSwaps = 0;
   if (verbose) {
      StartTime = GetTime();
      LastTime = StartTime;
   }

   if (delta < 0.50 || delta >= 1) Error("LLL_RR: bad delta");
   if (deep < 0) Error("LLL_RR: bad deep");
   RR Delta;
   conv(Delta, delta);
   return LLL_RR(B, 0, Delta, deep, check);
}

long LLL_RR(mat_ZZ& B, mat_ZZ& U, double delta, long deep, 
           LLLCheckFct check, long verb)
{
   verbose = verb;
   NumSwaps = 0;
   if (verbose) {
      StartTime = GetTime();
      LastTime = StartTime;
   }

   if (delta < 0.50 || delta >= 1) Error("LLL_RR: bad delta");
   if (deep < 0) Error("LLL_RR: bad deep");
   RR Delta;
   conv(Delta, delta);
   return LLL_RR(B, &U, Delta, deep, check);
}



static vec_RR BKZConstant;

static
void ComputeBKZConstant(long beta, long p)
{
   RR c_PI;
   ComputePi(c_PI);

   RR LogPI = log(c_PI);

   BKZConstant.SetLength(beta-1);

   vec_RR Log;
   Log.SetLength(beta);


   long i, j, k;
   RR x, y;

   for (j = 1; j <= beta; j++)
      Log(j) = log(to_RR(j));

   for (i = 1; i <= beta-1; i++) {
      // First, we compute x = gamma(i/2)^{2/i}

      k = i/2;

      if ((i & 1) == 0) { // i even
         x = 0;
         for (j = 1; j <= k; j++)
            x += Log(j);
          
         x = exp(x/k);

      }
      else { // i odd
         x = 0;
         for (j = k + 2; j <= 2*k + 2; j++)
            x += Log(j);

         x += 0.5*LogPI - 2*(k+1)*Log(2);

         x = exp(2*x/i);
      }

      // Second, we compute y = 2^{2*p/i}

      y = exp(-(2*p/to_RR(i))*Log(2));

      BKZConstant(i) = x*y/c_PI;
   }

}

static vec_RR BKZThresh;

static 
void ComputeBKZThresh(RR *c, long beta)
{
   BKZThresh.SetLength(beta-1);

   long i;
   RR x;
   RR t1;

   x = 0;

   for (i = 1; i <= beta-1; i++) {
      log(t1, c[i-1]);
      add(x, x, t1);
      div(t1, x, i);
      exp(t1, t1);
      mul(BKZThresh(i), t1, BKZConstant(i));
   }
}




static 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -