📄 lll_rr.cpp
字号:
#include <NTL/LLL.h>
#include <NTL/fileio.h>
#include <NTL/new.h>
NTL_START_IMPL
static void RowTransform(vec_ZZ& A, vec_ZZ& B, const ZZ& MU1)
// x = x - y*MU
{
static ZZ T, MU;
long k;
long n = A.length();
long i;
MU = MU1;
if (MU == 1) {
for (i = 1; i <= n; i++)
sub(A(i), A(i), B(i));
return;
}
if (MU == -1) {
for (i = 1; i <= n; i++)
add(A(i), A(i), B(i));
return;
}
if (MU == 0) return;
if (NumTwos(MU) >= NTL_ZZ_NBITS)
k = MakeOdd(MU);
else
k = 0;
if (MU.WideSinglePrecision()) {
long mu1;
conv(mu1, MU);
for (i = 1; i <= n; i++) {
mul(T, B(i), mu1);
if (k > 0) LeftShift(T, T, k);
sub(A(i), A(i), T);
}
}
else {
for (i = 1; i <= n; i++) {
mul(T, B(i), MU);
if (k > 0) LeftShift(T, T, k);
sub(A(i), A(i), T);
}
}
}
static void RowTransform2(vec_ZZ& A, vec_ZZ& B, const ZZ& MU1)
// x = x + y*MU
{
static ZZ T, MU;
long k;
long n = A.length();
long i;
MU = MU1;
if (MU == 1) {
for (i = 1; i <= n; i++)
add(A(i), A(i), B(i));
return;
}
if (MU == -1) {
for (i = 1; i <= n; i++)
sub(A(i), A(i), B(i));
return;
}
if (MU == 0) return;
if (NumTwos(MU) >= NTL_ZZ_NBITS)
k = MakeOdd(MU);
else
k = 0;
if (MU.WideSinglePrecision()) {
long mu1;
conv(mu1, MU);
for (i = 1; i <= n; i++) {
mul(T, B(i), mu1);
if (k > 0) LeftShift(T, T, k);
add(A(i), A(i), T);
}
}
else {
for (i = 1; i <= n; i++) {
mul(T, B(i), MU);
if (k > 0) LeftShift(T, T, k);
add(A(i), A(i), T);
}
}
}
void ComputeGS(const mat_ZZ& B, mat_RR& B1,
mat_RR& mu, vec_RR& b,
vec_RR& c, long k, const RR& bound, long st,
vec_RR& buf, const RR& bound2)
{
long i, j;
RR s, t, t1;
ZZ T1;
if (st < k) {
for (i = 1; i < st; i++)
mul(buf(i), mu(k,i), c(i));
}
for (j = st; j <= k-1; j++) {
InnerProduct(s, B1(k), B1(j));
sqr(t1, s);
mul(t1, t1, bound);
mul(t, b(k), b(j));
if (t >= bound2 && t >= t1) {
InnerProduct(T1, B(k), B(j));
conv(s, T1);
}
clear(t1);
for (i = 1; i <= j-1; i++) {
mul(t, mu(j, i), buf(i));
add(t1, t1, t);
}
sub(t, s, t1);
buf(j) = t;
div(mu(k, j), t, c(j));
}
clear(s);
for (j = 1; j <= k-1; j++) {
mul(t, mu(k, j), buf(j));
add(s, s, t);
}
sub(c(k), b(k), s);
}
static RR red_fudge;
static long log_red = 0;
static void init_red_fudge()
{
log_red = long(0.50*RR::precision());
power2(red_fudge, -log_red);
}
static void inc_red_fudge()
{
mul(red_fudge, red_fudge, 2);
log_red--;
cerr << "LLL_RR: warning--relaxing reduction (" << log_red << ")\n";
if (log_red < 4)
Error("LLL_RR: can not continue...sorry");
}
static long verbose = 0;
static unsigned long NumSwaps = 0;
static double StartTime = 0;
static double LastTime = 0;
static void LLLStatus(long max_k, double t, long m, const mat_ZZ& B)
{
cerr << "---- LLL_RR status ----\n";
cerr << "elapsed time: ";
PrintTime(cerr, t-StartTime);
cerr << ", stage: " << max_k;
cerr << ", rank: " << m;
cerr << ", swaps: " << NumSwaps << "\n";
ZZ t1;
long i;
double prodlen = 0;
for (i = 1; i <= m; i++) {
InnerProduct(t1, B(i), B(i));
if (!IsZero(t1))
prodlen += log(t1);
}
cerr << "log of prod of lengths: " << prodlen/(2.0*log(2.0)) << "\n";
if (LLLDumpFile) {
cerr << "dumping to " << LLLDumpFile << "...";
ofstream f;
OpenWrite(f, LLLDumpFile);
f << "[";
for (i = 1; i <= m; i++) {
f << B(i) << "\n";
}
f << "]\n";
f.close();
cerr << "\n";
}
LastTime = t;
}
static
long ll_LLL_RR(mat_ZZ& B, mat_ZZ* U, const RR& delta, long deep,
LLLCheckFct check, mat_RR& B1, mat_RR& mu,
vec_RR& b, vec_RR& c, long m, long init_k, long &quit)
{
long n = B.NumCols();
long i, j, k, Fc1;
ZZ MU;
RR mu1, t1, t2, cc;
ZZ T1;
RR bound;
// we tolerate a 15% loss of precision in computing
// inner products in ComputeGS.
power2(bound, 2*long(0.15*RR::precision()));
RR bound2;
power2(bound2, 2*RR::precision());
quit = 0;
k = init_k;
vec_long st_mem;
st_mem.SetLength(m+2);
long *st = st_mem.elts();
for (i = 1; i < k; i++)
st[i] = i;
for (i = k; i <= m+1; i++)
st[i] = 1;
vec_RR buf;
buf.SetLength(m);
long rst;
long counter;
long trigger_index;
long small_trigger;
long cnt;
RR half;
conv(half, 0.5);
RR half_plus_fudge;
add(half_plus_fudge, half, red_fudge);
long max_k = 0;
double tt;
while (k <= m) {
if (k > max_k) {
max_k = k;
}
if (verbose) {
tt = GetTime();
if (tt > LastTime + LLLStatusInterval)
LLLStatus(max_k, tt, m, B);
}
if (st[k] == k)
rst = 1;
else
rst = k;
if (st[k] < st[k+1]) st[k+1] = st[k];
ComputeGS(B, B1, mu, b, c, k, bound, st[k], buf, bound2);
st[k] = k;
counter = 0;
trigger_index = k;
small_trigger = 0;
cnt = 0;
do {
// size reduction
counter++;
if (counter > 10000) {
cerr << "LLL_XD: warning--possible infinite loop\n";
counter = 0;
}
Fc1 = 0;
for (j = rst-1; j >= 1; j--) {
abs(t1, mu(k,j));
if (t1 > half_plus_fudge) {
if (!Fc1) {
if (j > trigger_index ||
(j == trigger_index && small_trigger)) {
cnt++;
if (cnt > 10) {
inc_red_fudge();
add(half_plus_fudge, half, red_fudge);
cnt = 0;
}
}
trigger_index = j;
small_trigger = (t1 < 4);
}
Fc1 = 1;
mu1 = mu(k,j);
if (sign(mu1) >= 0) {
sub(mu1, mu1, half);
ceil(mu1, mu1);
}
else {
add(mu1, mu1, half);
floor(mu1, mu1);
}
if (mu1 == 1) {
for (i = 1; i <= j-1; i++)
sub(mu(k,i), mu(k,i), mu(j,i));
}
else if (mu1 == -1) {
for (i = 1; i <= j-1; i++)
add(mu(k,i), mu(k,i), mu(j,i));
}
else {
for (i = 1; i <= j-1; i++) {
mul(t2, mu1, mu(j,i));
sub(mu(k,i), mu(k,i), t2);
}
}
conv(MU, mu1);
sub(mu(k,j), mu(k,j), mu1);
RowTransform(B(k), B(j), MU);
if (U) RowTransform((*U)(k), (*U)(j), MU);
}
}
if (Fc1) {
for (i = 1; i <= n; i++)
conv(B1(k, i), B(k, i));
InnerProduct(b(k), B1(k), B1(k));
ComputeGS(B, B1, mu, b, c, k, bound, 1, buf, bound2);
}
} while (Fc1);
if (check && (*check)(B(k)))
quit = 1;
if (IsZero(b(k))) {
for (i = k; i < m; i++) {
// swap i, i+1
swap(B(i), B(i+1));
swap(B1(i), B1(i+1));
swap(b(i), b(i+1));
if (U) swap((*U)(i), (*U)(i+1));
}
for (i = k; i <= m+1; i++) st[i] = 1;
m--;
if (quit) break;
continue;
}
if (quit) break;
if (deep > 0) {
// deep insertions
cc = b(k);
long l = 1;
while (l <= k-1) {
mul(t1, delta, c(l));
if (t1 > cc) break;
sqr(t1, mu(k,l));
mul(t1, t1, c(l));
sub(cc, cc, t1);
l++;
}
if (l <= k-1 && (l <= deep || k-l <= deep)) {
// deep insertion at position l
for (i = k; i > l; i--) {
// swap rows i, i-1
swap(B(i), B(i-1));
swap(B1(i), B1(i-1));
swap(mu(i), mu(i-1));
swap(b(i), b(i-1));
if (U) swap((*U)(i), (*U)(i-1));
}
k = l;
continue;
}
} // end deep insertions
// test LLL reduction condition
if (k <= 1) {
k++;
}
else {
sqr(t1, mu(k,k-1));
mul(t1, t1, c(k-1));
add(t1, t1, c(k));
mul(t2, delta, c(k-1));
if (t2 > t1) {
// swap rows k, k-1
swap(B(k), B(k-1));
swap(B1(k), B1(k-1));
swap(mu(k), mu(k-1));
swap(b(k), b(k-1));
if (U) swap((*U)(k), (*U)(k-1));
k--;
NumSwaps++;
}
else {
k++;
}
}
}
if (verbose) {
LLLStatus(m+1, GetTime(), m, B);
}
return m;
}
static
long LLL_RR(mat_ZZ& B, mat_ZZ* U, const RR& delta, long deep,
LLLCheckFct check)
{
long m = B.NumRows();
long n = B.NumCols();
long i, j;
long new_m, dep, quit;
RR s;
ZZ MU;
RR mu1;
RR t1;
ZZ T1;
init_red_fudge();
if (U) ident(*U, m);
mat_RR B1; // approximates B
B1.SetDims(m, n);
mat_RR mu;
mu.SetDims(m, m);
vec_RR c; // squared lengths of Gramm-Schmidt basis vectors
c.SetLength(m);
vec_RR b; // squared lengths of basis vectors
b.SetLength(m);
for (i = 1; i <=m; i++)
for (j = 1; j <= n; j++)
conv(B1(i, j), B(i, j));
for (i = 1; i <= m; i++) {
InnerProduct(b(i), B1(i), B1(i));
}
new_m = ll_LLL_RR(B, U, delta, deep, check, B1, mu, b, c, m, 1, quit);
dep = m - new_m;
m = new_m;
if (dep > 0) {
// for consistency, we move all of the zero rows to the front
for (i = 0; i < m; i++) {
swap(B(m+dep-i), B(m-i));
if (U) swap((*U)(m+dep-i), (*U)(m-i));
}
}
return m;
}
long LLL_RR(mat_ZZ& B, double delta, long deep,
LLLCheckFct check, long verb)
{
verbose = verb;
NumSwaps = 0;
if (verbose) {
StartTime = GetTime();
LastTime = StartTime;
}
if (delta < 0.50 || delta >= 1) Error("LLL_RR: bad delta");
if (deep < 0) Error("LLL_RR: bad deep");
RR Delta;
conv(Delta, delta);
return LLL_RR(B, 0, Delta, deep, check);
}
long LLL_RR(mat_ZZ& B, mat_ZZ& U, double delta, long deep,
LLLCheckFct check, long verb)
{
verbose = verb;
NumSwaps = 0;
if (verbose) {
StartTime = GetTime();
LastTime = StartTime;
}
if (delta < 0.50 || delta >= 1) Error("LLL_RR: bad delta");
if (deep < 0) Error("LLL_RR: bad deep");
RR Delta;
conv(Delta, delta);
return LLL_RR(B, &U, Delta, deep, check);
}
static vec_RR BKZConstant;
static
void ComputeBKZConstant(long beta, long p)
{
RR c_PI;
ComputePi(c_PI);
RR LogPI = log(c_PI);
BKZConstant.SetLength(beta-1);
vec_RR Log;
Log.SetLength(beta);
long i, j, k;
RR x, y;
for (j = 1; j <= beta; j++)
Log(j) = log(to_RR(j));
for (i = 1; i <= beta-1; i++) {
// First, we compute x = gamma(i/2)^{2/i}
k = i/2;
if ((i & 1) == 0) { // i even
x = 0;
for (j = 1; j <= k; j++)
x += Log(j);
x = exp(x/k);
}
else { // i odd
x = 0;
for (j = k + 2; j <= 2*k + 2; j++)
x += Log(j);
x += 0.5*LogPI - 2*(k+1)*Log(2);
x = exp(2*x/i);
}
// Second, we compute y = 2^{2*p/i}
y = exp(-(2*p/to_RR(i))*Log(2));
BKZConstant(i) = x*y/c_PI;
}
}
static vec_RR BKZThresh;
static
void ComputeBKZThresh(RR *c, long beta)
{
BKZThresh.SetLength(beta-1);
long i;
RR x;
RR t1;
x = 0;
for (i = 1; i <= beta-1; i++) {
log(t1, c[i-1]);
add(x, x, t1);
div(t1, x, i);
exp(t1, t1);
mul(BKZThresh(i), t1, BKZConstant(i));
}
}
static
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -