📄 mat_zz.cpp
字号:
determinant(dd, AA);
if (CRT(d, d_prod, rep(dd), P))
d_instable = 1;
else
break;
}
}
zz_p::FFTInit(i);
long p = zz_p::modulus();
mat_zz_p AA;
conv(AA, A);
if (!check) {
mat_zz_p xx;
zz_p dd;
inv(dd, xx, AA);
d_instable = CRT(d, d_prod, rep(dd), p);
if (!IsZero(dd)) {
mul(xx, xx, dd);
x_instable = CRT(x, x_prod, xx);
}
else
x_instable = 1;
if (!d_instable && !x_instable) {
mul(y, x, A);
if (IsDiag(y, n, d)) {
d1 = d;
check = 1;
}
}
}
else {
zz_p dd;
determinant(dd, AA);
d_instable = CRT(d, d_prod, rep(dd), p);
}
}
if (check && d1 != d) {
mul(x, x, d);
ExactDiv(x, d1);
}
d_out = d;
if (check) x_out = x;
zbak.restore();
Zbak.restore();
}
void negate(mat_ZZ& X, const mat_ZZ& A)
{
long n = A.NumRows();
long m = A.NumCols();
X.SetDims(n, m);
long i, j;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
negate(X(i,j), A(i,j));
}
long IsZero(const mat_ZZ& a)
{
long n = a.NumRows();
long i;
for (i = 0; i < n; i++)
if (!IsZero(a[i]))
return 0;
return 1;
}
void clear(mat_ZZ& x)
{
long n = x.NumRows();
long i;
for (i = 0; i < n; i++)
clear(x[i]);
}
mat_ZZ operator+(const mat_ZZ& a, const mat_ZZ& b)
{
mat_ZZ res;
add(res, a, b);
NTL_OPT_RETURN(mat_ZZ, res);
}
mat_ZZ operator*(const mat_ZZ& a, const mat_ZZ& b)
{
mat_ZZ res;
mul_aux(res, a, b);
NTL_OPT_RETURN(mat_ZZ, res);
}
mat_ZZ operator-(const mat_ZZ& a, const mat_ZZ& b)
{
mat_ZZ res;
sub(res, a, b);
NTL_OPT_RETURN(mat_ZZ, res);
}
mat_ZZ operator-(const mat_ZZ& a)
{
mat_ZZ res;
negate(res, a);
NTL_OPT_RETURN(mat_ZZ, res);
}
vec_ZZ operator*(const mat_ZZ& a, const vec_ZZ& b)
{
vec_ZZ res;
mul_aux(res, a, b);
NTL_OPT_RETURN(vec_ZZ, res);
}
vec_ZZ operator*(const vec_ZZ& a, const mat_ZZ& b)
{
vec_ZZ res;
mul_aux(res, a, b);
NTL_OPT_RETURN(vec_ZZ, res);
}
void inv(mat_ZZ& X, const mat_ZZ& A)
{
ZZ d;
inv(d, X, A);
if (d == -1)
negate(X, X);
else if (d != 1)
Error("inv: non-invertible matrix");
}
void power(mat_ZZ& X, const mat_ZZ& A, const ZZ& e)
{
if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");
if (e == 0) {
ident(X, A.NumRows());
return;
}
mat_ZZ T1, T2;
long i, k;
k = NumBits(e);
T1 = A;
for (i = k-2; i >= 0; i--) {
sqr(T2, T1);
if (bit(e, i))
mul(T1, T2, A);
else
T1 = T2;
}
if (e < 0)
inv(X, T1);
else
X = T1;
}
/***********************************************************
routines for solving a linear system vi Hensel lifting
************************************************************/
static
long MaxBits(const mat_ZZ& A)
{
long m = 0;
long i, j;
for (i = 0; i < A.NumRows(); i++)
for (j = 0; j < A.NumCols(); j++)
m = max(m, NumBits(A[i][j]));
return m;
}
// Computes an upper bound on the numerators and denominators
// to the solution x*A = b using Hadamard's bound and Cramer's rule.
// If A contains a zero row, then sets both bounds to zero.
static
void hadamard(ZZ& num_bound, ZZ& den_bound,
const mat_ZZ& A, const vec_ZZ& b)
{
long n = A.NumRows();
if (n == 0) Error("internal error: hadamard with n = 0");
ZZ b_len, min_A_len, prod, t1;
InnerProduct(min_A_len, A[0], A[0]);
prod = min_A_len;
long i;
for (i = 1; i < n; i++) {
InnerProduct(t1, A[i], A[i]);
if (t1 < min_A_len)
min_A_len = t1;
mul(prod, prod, t1);
}
if (min_A_len == 0) {
num_bound = 0;
den_bound = 0;
return;
}
InnerProduct(b_len, b, b);
div(t1, prod, min_A_len);
mul(t1, t1, b_len);
SqrRoot(num_bound, t1);
SqrRoot(den_bound, prod);
}
static
void MixedMul(vec_ZZ& x, const vec_zz_p& a, const mat_ZZ& B)
{
long n = B.NumRows();
long l = B.NumCols();
if (n != a.length())
Error("matrix mul: dimension mismatch");
x.SetLength(l);
long i, k;
ZZ acc, tmp;
for (i = 1; i <= l; i++) {
clear(acc);
for (k = 1; k <= n; k++) {
mul(tmp, B(k, i), rep(a(k)));
add(acc, acc, tmp);
}
x(i) = acc;
}
}
static
void SubDiv(vec_ZZ& e, const vec_ZZ& t, long p)
{
long n = e.length();
if (t.length() != n) Error("SubDiv: dimension mismatch");
ZZ s;
long i;
for (i = 0; i < n; i++) {
sub(s, e[i], t[i]);
div(e[i], s, p);
}
}
static
void MulAdd(vec_ZZ& x, const ZZ& prod, const vec_zz_p& h)
{
long n = x.length();
if (h.length() != n) Error("MulAdd: dimension mismatch");
ZZ t;
long i;
for (i = 0; i < n; i++) {
mul(t, prod, rep(h[i]));
add(x[i], x[i], t);
}
}
static
void double_MixedMul1(vec_ZZ& x, double *a, double **B, long n)
{
long i, k;
double acc;
for (i = 0; i < n; i++) {
double *bp = B[i];
acc = 0;
for (k = 0; k < n; k++) {
acc += bp[k] * a[k];
}
conv(x[i], acc);
}
}
static
void double_MixedMul2(vec_ZZ& x, double *a, double **B, long n, long limit)
{
long i, k;
double acc;
ZZ acc1, t;
long j;
for (i = 0; i < n; i++) {
double *bp = B[i];
clear(acc1);
acc = 0;
j = 0;
for (k = 0; k < n; k++) {
acc += bp[k] * a[k];
j++;
if (j == limit) {
conv(t, acc);
add(acc1, acc1, t);
acc = 0;
j = 0;
}
}
if (j > 0) {
conv(t, acc);
add(acc1, acc1, t);
}
x[i] = acc1;
}
}
static
void long_MixedMul1(vec_ZZ& x, long *a, long **B, long n)
{
long i, k;
long acc;
for (i = 0; i < n; i++) {
long *bp = B[i];
acc = 0;
for (k = 0; k < n; k++) {
acc += bp[k] * a[k];
}
conv(x[i], acc);
}
}
static
void long_MixedMul2(vec_ZZ& x, long *a, long **B, long n, long limit)
{
long i, k;
long acc;
ZZ acc1, t;
long j;
for (i = 0; i < n; i++) {
long *bp = B[i];
clear(acc1);
acc = 0;
j = 0;
for (k = 0; k < n; k++) {
acc += bp[k] * a[k];
j++;
if (j == limit) {
conv(t, acc);
add(acc1, acc1, t);
acc = 0;
j = 0;
}
}
if (j > 0) {
conv(t, acc);
add(acc1, acc1, t);
}
x[i] = acc1;
}
}
void solve1(ZZ& d_out, vec_ZZ& x_out, const mat_ZZ& A, const vec_ZZ& b)
{
long n = A.NumRows();
if (A.NumCols() != n)
Error("solve1: nonsquare matrix");
if (b.length() != n)
Error("solve1: dimension mismatch");
if (n == 0) {
set(d_out);
x_out.SetLength(0);
return;
}
ZZ num_bound, den_bound;
hadamard(num_bound, den_bound, A, b);
if (den_bound == 0) {
clear(d_out);
return;
}
zz_pBak zbak;
zbak.save();
long i;
long j;
ZZ prod;
prod = 1;
mat_zz_p B;
for (i = 0; ; i++) {
zz_p::FFTInit(i);
mat_zz_p AA, BB;
zz_p dd;
conv(AA, A);
inv(dd, BB, AA);
if (dd != 0) {
transpose(B, BB);
break;
}
mul(prod, prod, zz_p::modulus());
if (prod > den_bound) {
d_out = 0;
return;
}
}
long max_A_len = MaxBits(A);
long use_double_mul1 = 0;
long use_double_mul2 = 0;
long double_limit = 0;
if (max_A_len + NTL_SP_NBITS + NumBits(n) <= NTL_DOUBLE_PRECISION-1)
use_double_mul1 = 1;
if (!use_double_mul1 && max_A_len+NTL_SP_NBITS+2 <= NTL_DOUBLE_PRECISION-1) {
use_double_mul2 = 1;
double_limit = (1L << (NTL_DOUBLE_PRECISION-1-max_A_len-NTL_SP_NBITS));
}
long use_long_mul1 = 0;
long use_long_mul2 = 0;
long long_limit = 0;
if (max_A_len + NTL_SP_NBITS + NumBits(n) <= NTL_BITS_PER_LONG-1)
use_long_mul1 = 1;
if (!use_long_mul1 && max_A_len+NTL_SP_NBITS+2 <= NTL_BITS_PER_LONG-1) {
use_long_mul2 = 1;
long_limit = (1L << (NTL_BITS_PER_LONG-1-max_A_len-NTL_SP_NBITS));
}
if (use_double_mul1 && use_long_mul1)
use_long_mul1 = 0;
else if (use_double_mul1 && use_long_mul2)
use_long_mul2 = 0;
else if (use_double_mul2 && use_long_mul1)
use_double_mul2 = 0;
else if (use_double_mul2 && use_long_mul2) {
if (long_limit > double_limit)
use_double_mul2 = 0;
else
use_long_mul2 = 0;
}
double **double_A;
double *double_h;
typedef double *double_ptr;
if (use_double_mul1 || use_double_mul2) {
double_h = NTL_NEW_OP double[n];
double_A = NTL_NEW_OP double_ptr[n];
if (!double_h || !double_A) Error("solve1: out of mem");
for (i = 0; i < n; i++) {
double_A[i] = NTL_NEW_OP double[n];
if (!double_A[i]) Error("solve1: out of mem");
}
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
double_A[j][i] = to_double(A[i][j]);
}
long **long_A;
long *long_h;
typedef long *long_ptr;
if (use_long_mul1 || use_long_mul2) {
long_h = NTL_NEW_OP long[n];
long_A = NTL_NEW_OP long_ptr[n];
if (!long_h || !long_A) Error("solve1: out of mem");
for (i = 0; i < n; i++) {
long_A[i] = NTL_NEW_OP long[n];
if (!long_A[i]) Error("solve1: out of mem");
}
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
long_A[j][i] = to_long(A[i][j]);
}
vec_ZZ x;
x.SetLength(n);
vec_zz_p h;
h.SetLength(n);
vec_ZZ e;
e = b;
vec_zz_p ee;
vec_ZZ t;
t.SetLength(n);
prod = 1;
ZZ bound1;
mul(bound1, num_bound, den_bound);
mul(bound1, bound1, 2);
while (prod <= bound1) {
conv(ee, e);
mul(h, B, ee);
if (use_double_mul1) {
for (i = 0; i < n; i++)
double_h[i] = to_double(rep(h[i]));
double_MixedMul1(t, double_h, double_A, n);
}
else if (use_double_mul2) {
for (i = 0; i < n; i++)
double_h[i] = to_double(rep(h[i]));
double_MixedMul2(t, double_h, double_A, n, double_limit);
}
else if (use_long_mul1) {
for (i = 0; i < n; i++)
long_h[i] = to_long(rep(h[i]));
long_MixedMul1(t, long_h, long_A, n);
}
else if (use_long_mul2) {
for (i = 0; i < n; i++)
long_h[i] = to_long(rep(h[i]));
long_MixedMul2(t, long_h, long_A, n, long_limit);
}
else
MixedMul(t, h, A); // t = h*A
SubDiv(e, t, zz_p::modulus()); // e = (e-t)/p
MulAdd(x, prod, h); // x = x + prod*h
mul(prod, prod, zz_p::modulus());
}
vec_ZZ num, denom;
ZZ d, d_mod_prod, tmp1;
num.SetLength(n);
denom.SetLength(n);
d = 1;
d_mod_prod = 1;
for (i = 0; i < n; i++) {
rem(x[i], x[i], prod);
MulMod(x[i], x[i], d_mod_prod, prod);
if (!ReconstructRational(num[i], denom[i], x[i], prod,
num_bound, den_bound))
Error("solve1 internal error: rat recon failed!");
mul(d, d, denom[i]);
if (i != n-1) {
if (denom[i] != 1) {
div(den_bound, den_bound, denom[i]);
mul(bound1, num_bound, den_bound);
mul(bound1, bound1, 2);
div(tmp1, prod, zz_p::modulus());
while (tmp1 > bound1) {
prod = tmp1;
div(tmp1, prod, zz_p::modulus());
}
rem(tmp1, denom[i], prod);
rem(d_mod_prod, d_mod_prod, prod);
MulMod(d_mod_prod, d_mod_prod, tmp1, prod);
}
}
}
tmp1 = 1;
for (i = n-1; i >= 0; i--) {
mul(num[i], num[i], tmp1);
mul(tmp1, tmp1, denom[i]);
}
x_out.SetLength(n);
for (i = 0; i < n; i++) {
x_out[i] = num[i];
}
d_out = d;
if (use_double_mul1 || use_double_mul2) {
delete [] double_h;
for (i = 0; i < n; i++) {
delete [] double_A[i];
}
delete [] double_A;
}
if (use_long_mul1 || use_long_mul2) {
delete [] long_h;
for (i = 0; i < n; i++) {
delete [] long_A[i];
}
delete [] long_A;
}
}
NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -