📄 lzz_pexfactoring.cpp
字号:
if (deg(f) == 1) return 1;
zz_pEXModulus F;
build(F, f);
zz_pEX h;
FrobeniusMap(h, F);
zz_pEX s;
PowerCompose(s, h, F.n, F);
if (!IsX(s)) return 0;
FacVec fvec;
FactorInt(fvec, F.n);
return RecIrredTest(fvec.length()-1, h, F, fvec);
}
long IterIrredTest(const zz_pEX& f)
{
if (deg(f) <= 0) return 0;
if (deg(f) == 1) return 1;
zz_pEXModulus F;
build(F, f);
zz_pEX h;
FrobeniusMap(h, F);
long CompTableSize = 2*SqrRoot(deg(f));
zz_pEXArgument H;
build(H, h, F, CompTableSize);
long i, d, limit, limit_sqr;
zz_pEX g, X, t, prod;
SetX(X);
i = 0;
g = h;
d = 1;
limit = 2;
limit_sqr = limit*limit;
set(prod);
while (2*d <= deg(f)) {
sub(t, g, X);
MulMod(prod, prod, t, F);
i++;
if (i == limit_sqr) {
GCD(t, f, prod);
if (!IsOne(t)) return 0;
set(prod);
limit++;
limit_sqr = limit*limit;
i = 0;
}
d = d + 1;
if (2*d <= deg(f)) {
CompMod(g, g, H, F);
}
}
if (i > 0) {
GCD(t, f, prod);
if (!IsOne(t)) return 0;
}
return 1;
}
static
void MulByXPlusY(vec_zz_pEX& h, const zz_pEX& f, const zz_pEX& g)
// h represents the bivariate polynomial h[0] + h[1]*Y + ... + h[n-1]*Y^k,
// where the h[i]'s are polynomials in X, each of degree < deg(f),
// and k < deg(g).
// h is replaced by the bivariate polynomial h*(X+Y) (mod f(X), g(Y)).
{
long n = deg(g);
long k = h.length()-1;
if (k < 0) return;
if (k < n-1) {
h.SetLength(k+2);
h[k+1] = h[k];
for (long i = k; i >= 1; i--) {
MulByXMod(h[i], h[i], f);
add(h[i], h[i], h[i-1]);
}
MulByXMod(h[0], h[0], f);
}
else {
zz_pEX b, t;
b = h[n-1];
for (long i = n-1; i >= 1; i--) {
mul(t, b, g.rep[i]);
MulByXMod(h[i], h[i], f);
add(h[i], h[i], h[i-1]);
add(h[i], h[i], t);
}
mul(t, b, g.rep[0]);
MulByXMod(h[0], h[0], f);
add(h[0], h[0], t);
}
// normalize
k = h.length()-1;
while (k >= 0 && IsZero(h[k])) k--;
h.SetLength(k+1);
}
static
void IrredCombine(zz_pEX& x, const zz_pEX& f, const zz_pEX& g)
{
if (deg(f) < deg(g)) {
IrredCombine(x, g, f);
return;
}
// deg(f) >= deg(g)...not necessary, but maybe a little more
// time & space efficient
long df = deg(f);
long dg = deg(g);
long m = df*dg;
vec_zz_pEX h(INIT_SIZE, dg);
long i;
for (i = 0; i < dg; i++) h[i].SetMaxLength(df);
h.SetLength(1);
set(h[0]);
vec_zz_pE a;
a.SetLength(2*m);
for (i = 0; i < 2*m; i++) {
a[i] = ConstTerm(h[0]);
if (i < 2*m-1)
MulByXPlusY(h, f, g);
}
MinPolySeq(x, a, m);
}
static
void BuildPrimePowerIrred(zz_pEX& f, long q, long e)
{
long n = power(q, e);
do {
random(f, n);
SetCoeff(f, n);
} while (!IterIrredTest(f));
}
static
void RecBuildIrred(zz_pEX& f, long u, const FacVec& fvec)
{
if (fvec[u].link == -1)
BuildPrimePowerIrred(f, fvec[u].q, fvec[u].a);
else {
zz_pEX g, h;
RecBuildIrred(g, fvec[u].link, fvec);
RecBuildIrred(h, fvec[u].link+1, fvec);
IrredCombine(f, g, h);
}
}
void BuildIrred(zz_pEX& f, long n)
{
if (n <= 0)
Error("BuildIrred: n must be positive");
if (n >= (1L << (NTL_BITS_PER_LONG-4))) Error("overflow in BuildIrred");
if (n == 1) {
SetX(f);
return;
}
FacVec fvec;
FactorInt(fvec, n);
RecBuildIrred(f, fvec.length()-1, fvec);
}
#if 0
void BuildIrred(zz_pEX& f, long n)
{
if (n <= 0)
Error("BuildIrred: n must be positive");
if (n == 1) {
SetX(f);
return;
}
zz_pEX g;
do {
random(g, n);
SetCoeff(g, n);
} while (!IterIrredTest(g));
f = g;
}
#endif
void BuildRandomIrred(zz_pEX& f, const zz_pEX& g)
{
zz_pEXModulus G;
zz_pEX h, ff;
build(G, g);
do {
random(h, deg(g));
IrredPolyMod(ff, h, G);
} while (deg(ff) < deg(g));
f = ff;
}
/************* NEW DDF ****************/
long zz_pEX_GCDTableSize = 4;
char zz_pEX_stem[256] = "";
double zz_pEXFileThresh = 256;
static vec_zz_pEX BabyStepFile;
static vec_zz_pEX GiantStepFile;
static long use_files;
static
double CalcTableSize(long n, long k)
{
double sz = zz_p::storage();
sz = sz*zz_pE::degree();
sz = sz + NTL_VECTOR_HEADER_SIZE + sizeof(vec_zz_p);
sz = sz*n;
sz = sz + NTL_VECTOR_HEADER_SIZE + sizeof(vec_zz_pE);
sz = sz * k;
sz = sz/1024;
return sz;
}
static
void GenerateBabySteps(zz_pEX& h1, const zz_pEX& f, const zz_pEX& h, long k,
long verbose)
{
double t;
if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }
zz_pEXModulus F;
build(F, f);
zz_pEXArgument H;
#if 0
double n2 = sqrt(double(F.n));
double n4 = sqrt(n2);
double n34 = n2*n4;
long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
long sz = 2*SqrRoot(F.n);
#endif
build(H, h, F, sz);
h1 = h;
long i;
if (!use_files) {
BabyStepFile.kill();
BabyStepFile.SetLength(k-1);
}
for (i = 1; i <= k-1; i++) {
if (use_files) {
ofstream s;
OpenWrite(s, FileName(zz_pEX_stem, "baby", i));
s << h1 << "\n";
s.close();
}
else
BabyStepFile(i) = h1;
CompMod(h1, h1, H, F);
if (verbose) cerr << "+";
}
if (verbose)
cerr << (GetTime()-t) << "\n";
}
static
void GenerateGiantSteps(const zz_pEX& f, const zz_pEX& h, long l, long verbose)
{
double t;
if (verbose) { cerr << "generating giant steps..."; t = GetTime(); }
zz_pEXModulus F;
build(F, f);
zz_pEXArgument H;
#if 0
double n2 = sqrt(double(F.n));
double n4 = sqrt(n2);
double n34 = n2*n4;
long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
long sz = 2*SqrRoot(F.n);
#endif
build(H, h, F, sz);
zz_pEX h1;
h1 = h;
long i;
if (!use_files) {
GiantStepFile.kill();
GiantStepFile.SetLength(l);
}
for (i = 1; i <= l-1; i++) {
if (use_files) {
ofstream s;
OpenWrite(s, FileName(zz_pEX_stem, "giant", i));
s << h1 << "\n";
s.close();
}
else
GiantStepFile(i) = h1;
CompMod(h1, h1, H, F);
if (verbose) cerr << "+";
}
if (use_files) {
ofstream s;
OpenWrite(s, FileName(zz_pEX_stem, "giant", i));
s << h1 << "\n";
s.close();
}
else
GiantStepFile(i) = h1;
if (verbose)
cerr << (GetTime()-t) << "\n";
}
static
void FileCleanup(long k, long l)
{
if (use_files) {
long i;
for (i = 1; i <= k-1; i++)
remove(FileName(zz_pEX_stem, "baby", i));
for (i = 1; i <= l; i++)
remove(FileName(zz_pEX_stem, "giant", i));
}
else {
BabyStepFile.kill();
GiantStepFile.kill();
}
}
static
void NewAddFactor(vec_pair_zz_pEX_long& u, const zz_pEX& g, long m, long verbose)
{
long len = u.length();
u.SetLength(len+1);
u[len].a = g;
u[len].b = m;
if (verbose) {
cerr << "split " << m << " " << deg(g) << "\n";
}
}
static
void NewProcessTable(vec_pair_zz_pEX_long& u, zz_pEX& f, const zz_pEXModulus& F,
vec_zz_pEX& buf, long size, long StartInterval,
long IntervalLength, long verbose)
{
if (size == 0) return;
zz_pEX& g = buf[size-1];
long i;
for (i = 0; i < size-1; i++)
MulMod(g, g, buf[i], F);
GCD(g, f, g);
if (deg(g) == 0) return;
div(f, f, g);
long d = (StartInterval-1)*IntervalLength + 1;
i = 0;
long interval = StartInterval;
while (i < size-1 && 2*d <= deg(g)) {
GCD(buf[i], buf[i], g);
if (deg(buf[i]) > 0) {
NewAddFactor(u, buf[i], interval, verbose);
div(g, g, buf[i]);
}
i++;
interval++;
d += IntervalLength;
}
if (deg(g) > 0) {
if (i == size-1)
NewAddFactor(u, g, interval, verbose);
else
NewAddFactor(u, g, (deg(g)+IntervalLength-1)/IntervalLength, verbose);
}
}
static
void FetchGiantStep(zz_pEX& g, long gs, const zz_pEXModulus& F)
{
if (use_files) {
ifstream s;
OpenRead(s, FileName(zz_pEX_stem, "giant", gs));
s >> g;
s.close();
}
else
g = GiantStepFile(gs);
rem(g, g, F);
}
static
void FetchBabySteps(vec_zz_pEX& v, long k)
{
v.SetLength(k);
SetX(v[0]);
long i;
for (i = 1; i <= k-1; i++) {
if (use_files) {
ifstream s;
OpenRead(s, FileName(zz_pEX_stem, "baby", i));
s >> v[i];
s.close();
}
else
v[i] = BabyStepFile(i);
}
}
static
void GiantRefine(vec_pair_zz_pEX_long& u, const zz_pEX& ff, long k, long l,
long verbose)
{
double t;
if (verbose) {
cerr << "giant refine...";
t = GetTime();
}
u.SetLength(0);
vec_zz_pEX BabyStep;
FetchBabySteps(BabyStep, k);
vec_zz_pEX buf(INIT_SIZE, zz_pEX_GCDTableSize);
zz_pEX f;
f = ff;
zz_pEXModulus F;
build(F, f);
zz_pEX g;
zz_pEX h;
long size = 0;
long first_gs;
long d = 1;
while (2*d <= deg(f)) {
long old_n = deg(f);
long gs = (d+k-1)/k;
long bs = gs*k - d;
if (bs == k-1) {
size++;
if (size == 1) first_gs = gs;
FetchGiantStep(g, gs, F);
sub(buf[size-1], g, BabyStep[bs]);
}
else {
sub(h, g, BabyStep[bs]);
MulMod(buf[size-1], buf[size-1], h, F);
}
if (verbose && bs == 0) cerr << "+";
if (size == zz_pEX_GCDTableSize && bs == 0) {
NewProcessTable(u, f, F, buf, size, first_gs, k, verbose);
if (verbose) cerr << "*";
size = 0;
}
d++;
if (2*d <= deg(f) && deg(f) < old_n) {
build(F, f);
long i;
for (i = 1; i <= k-1; i++)
rem(BabyStep[i], BabyStep[i], F);
}
}
if (size > 0) {
NewProcessTable(u, f, F, buf, size, first_gs, k, verbose);
if (verbose) cerr << "*";
}
if (deg(f) > 0)
NewAddFactor(u, f, 0, verbose);
if (verbose) {
t = GetTime()-t;
cerr << "giant refine time: " << t << "\n";
}
}
static
void IntervalRefine(vec_pair_zz_pEX_long& factors, const zz_pEX& ff,
long k, long gs, const vec_zz_pEX& BabyStep, long verbose)
{
vec_zz_pEX buf(INIT_SIZE, zz_pEX_GCDTableSize);
zz_pEX f;
f = ff;
zz_pEXModulus F;
build(F, f);
zz_pEX g;
FetchGiantStep(g, gs, F);
long size = 0;
long first_d;
long d = (gs-1)*k + 1;
long bs = k-1;
while (bs >= 0 && 2*d <= deg(f)) {
long old_n = deg(f);
if (size == 0) first_d = d;
rem(buf[size], BabyStep[bs], F);
sub(buf[size], buf[size], g);
size++;
if (size == zz_pEX_GCDTableSize) {
NewProcessTable(factors, f, F, buf, size, first_d, 1, verbose);
size = 0;
}
d++;
bs--;
if (bs >= 0 && 2*d <= deg(f) && deg(f) < old_n) {
build(F, f);
rem(g, g, F);
}
}
NewProcessTable(factors, f, F, buf, size, first_d, 1, verbose);
if (deg(f) > 0)
NewAddFactor(factors, f, deg(f), verbose);
}
static
void BabyRefine(vec_pair_zz_pEX_long& factors, const vec_pair_zz_pEX_long& u,
long k, long l, long verbose)
{
double t;
if (verbose) {
cerr << "baby refine...";
t = GetTime();
}
factors.SetLength(0);
vec_zz_pEX BabyStep;
long i;
for (i = 0; i < u.length(); i++) {
const zz_pEX& g = u[i].a;
long gs = u[i].b;
if (gs == 0 || 2*((gs-1)*k+1) > deg(g))
NewAddFactor(factors, g, deg(g), verbose);
else {
if (BabyStep.length() == 0)
FetchBabySteps(BabyStep, k);
IntervalRefine(factors, g, k, gs, BabyStep, verbose);
}
}
if (verbose) {
t = GetTime()-t;
cerr << "baby refine time: " << t << "\n";
}
}
void NewDDF(vec_pair_zz_pEX_long& factors,
const zz_pEX& f,
const zz_pEX& h,
long verbose)
{
if (!IsOne(LeadCoeff(f)))
Error("NewDDF: bad args");
if (deg(f) == 0) {
factors.SetLength(0);
return;
}
if (deg(f) == 1) {
factors.SetLength(0);
append(factors, cons(f, 1));
return;
}
if (!zz_pEX_stem[0])
sprintf(zz_pEX_stem, "ddf-%ld", RandomBnd(10000));
long B = deg(f)/2;
long k = SqrRoot(B);
long l = (B+k-1)/k;
zz_pEX h1;
if (CalcTableSize(deg(f), k + l - 1) > zz_pEXFileThresh)
use_files = 1;
else
use_files = 0;
GenerateBabySteps(h1, f, h, k, verbose);
GenerateGiantSteps(f, h1, l, verbose);
vec_pair_zz_pEX_long u;
GiantRefine(u, f, k, l, verbose);
BabyRefine(factors, u, k, l, verbose);
FileCleanup(k, l);
}
long IterComputeDegree(const zz_pEX& h, const zz_pEXModulus& F)
{
long n = deg(F);
if (n == 1 || IsX(h)) return 1;
long B = n/2;
long k = SqrRoot(B);
long l = (B+k-1)/k;
zz_pEXArgument H;
#if 0
double n2 = sqrt(double(n));
double n4 = sqrt(n2);
double n34 = n2*n4;
long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
long sz = 2*SqrRoot(F.n);
#endif
build(H, h, F, sz);
zz_pEX h1;
h1 = h;
vec_zz_pEX baby;
baby.SetLength(k);
SetX(baby[0]);
long i;
for (i = 1; i <= k-1; i++) {
baby[i] = h1;
CompMod(h1, h1, H, F);
if (IsX(h1)) return i+1;
}
build(H, h1, F, sz);
long j;
for (j = 2; j <= l; j++) {
CompMod(h1, h1, H, F);
for (i = k-1; i >= 0; i--) {
if (h1 == baby[i])
return j*k-i;
}
}
return n;
}
NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -