📄 lzz_pexfactoring.cpp
字号:
#include <NTL/lzz_pEXFactoring.h>
#include <NTL/FacVec.h>
#include <NTL/fileio.h>
#include <stdio.h>
#include <NTL/new.h>
NTL_START_IMPL
static
void IterPower(zz_pE& c, const zz_pE& a, long n)
{
zz_pE res;
long i;
res = a;
for (i = 0; i < n; i++)
power(res, res, zz_p::modulus());
c = res;
}
void SquareFreeDecomp(vec_pair_zz_pEX_long& u, const zz_pEX& ff)
{
zz_pEX f = ff;
if (!IsOne(LeadCoeff(f)))
Error("SquareFreeDecomp: bad args");
zz_pEX r, t, v, tmp1;
long m, j, finished, done;
u.SetLength(0);
if (deg(f) == 0)
return;
m = 1;
finished = 0;
do {
j = 1;
diff(tmp1, f);
GCD(r, f, tmp1);
div(t, f, r);
if (deg(t) > 0) {
done = 0;
do {
GCD(v, r, t);
div(tmp1, t, v);
if (deg(tmp1) > 0) append(u, cons(tmp1, j*m));
if (deg(v) > 0) {
div(r, r, v);
t = v;
j++;
}
else
done = 1;
} while (!done);
if (deg(r) == 0) finished = 1;
}
if (!finished) {
/* r is a p-th power */
long k, d;
long p = to_long(zz_p::modulus());
d = deg(r)/p;
f.rep.SetLength(d+1);
for (k = 0; k <= d; k++)
IterPower(f.rep[k], r.rep[k*p], zz_pE::degree()-1);
m = m*p;
}
} while (!finished);
}
static
void AbsTraceMap(zz_pEX& h, const zz_pEX& a, const zz_pEXModulus& F)
{
zz_pEX res, tmp;
long k = NumBits(zz_pE::cardinality())-1;
res = a;
tmp = a;
long i;
for (i = 0; i < k-1; i++) {
SqrMod(tmp, tmp, F);
add(res, res, tmp);
}
h = res;
}
void FrobeniusMap(zz_pEX& h, const zz_pEXModulus& F)
{
PowerXMod(h, zz_pE::cardinality(), F);
}
static
void RecFindRoots(vec_zz_pE& x, const zz_pEX& f)
{
if (deg(f) == 0) return;
if (deg(f) == 1) {
long k = x.length();
x.SetLength(k+1);
negate(x[k], ConstTerm(f));
return;
}
zz_pEX h;
zz_pEX r;
{
zz_pEXModulus F;
build(F, f);
do {
random(r, deg(F));
if (IsOdd(zz_pE::cardinality())) {
PowerMod(h, r, RightShift(zz_pE::cardinality(), 1), F);
sub(h, h, 1);
}
else {
AbsTraceMap(h, r, F);
}
GCD(h, h, f);
} while (deg(h) <= 0 || deg(h) == deg(f));
}
RecFindRoots(x, h);
div(h, f, h);
RecFindRoots(x, h);
}
void FindRoots(vec_zz_pE& x, const zz_pEX& ff)
{
zz_pEX f = ff;
if (!IsOne(LeadCoeff(f)))
Error("FindRoots: bad args");
x.SetMaxLength(deg(f));
x.SetLength(0);
RecFindRoots(x, f);
}
void split(zz_pEX& f1, zz_pEX& g1, zz_pEX& f2, zz_pEX& g2,
const zz_pEX& f, const zz_pEX& g,
const vec_zz_pE& roots, long lo, long mid)
{
long r = mid-lo+1;
zz_pEXModulus F;
build(F, f);
vec_zz_pE lroots(INIT_SIZE, r);
long i;
for (i = 0; i < r; i++)
lroots[i] = roots[lo+i];
zz_pEX h, a, d;
BuildFromRoots(h, lroots);
CompMod(a, h, g, F);
GCD(f1, a, f);
div(f2, f, f1);
rem(g1, g, f1);
rem(g2, g, f2);
}
void RecFindFactors(vec_zz_pEX& factors, const zz_pEX& f, const zz_pEX& g,
const vec_zz_pE& roots, long lo, long hi)
{
long r = hi-lo+1;
if (r == 0) return;
if (r == 1) {
append(factors, f);
return;
}
zz_pEX f1, g1, f2, g2;
long mid = (lo+hi)/2;
split(f1, g1, f2, g2, f, g, roots, lo, mid);
RecFindFactors(factors, f1, g1, roots, lo, mid);
RecFindFactors(factors, f2, g2, roots, mid+1, hi);
}
void FindFactors(vec_zz_pEX& factors, const zz_pEX& f, const zz_pEX& g,
const vec_zz_pE& roots)
{
long r = roots.length();
factors.SetMaxLength(r);
factors.SetLength(0);
RecFindFactors(factors, f, g, roots, 0, r-1);
}
void IterFindFactors(vec_zz_pEX& factors, const zz_pEX& f,
const zz_pEX& g, const vec_zz_pE& roots)
{
long r = roots.length();
long i;
zz_pEX h;
factors.SetLength(r);
for (i = 0; i < r; i++) {
sub(h, g, roots[i]);
GCD(factors[i], f, h);
}
}
void TraceMap(zz_pEX& w, const zz_pEX& a, long d, const zz_pEXModulus& F,
const zz_pEX& b)
{
if (d < 0) Error("TraceMap: bad args");
zz_pEX y, z, t;
z = b;
y = a;
clear(w);
while (d) {
if (d == 1) {
if (IsZero(w))
w = y;
else {
CompMod(w, w, z, F);
add(w, w, y);
}
}
else if ((d & 1) == 0) {
Comp2Mod(z, t, z, y, z, F);
add(y, t, y);
}
else if (IsZero(w)) {
w = y;
Comp2Mod(z, t, z, y, z, F);
add(y, t, y);
}
else {
Comp3Mod(z, t, w, z, y, w, z, F);
add(w, w, y);
add(y, t, y);
}
d = d >> 1;
}
}
void PowerCompose(zz_pEX& y, const zz_pEX& h, long q, const zz_pEXModulus& F)
{
if (q < 0) Error("PowerCompose: bad args");
zz_pEX z(INIT_SIZE, F.n);
long sw;
z = h;
SetX(y);
while (q) {
sw = 0;
if (q > 1) sw = 2;
if (q & 1) {
if (IsX(y))
y = z;
else
sw = sw | 1;
}
switch (sw) {
case 0:
break;
case 1:
CompMod(y, y, z, F);
break;
case 2:
CompMod(z, z, z, F);
break;
case 3:
Comp2Mod(y, z, y, z, z, F);
break;
}
q = q >> 1;
}
}
long ProbIrredTest(const zz_pEX& f, long iter)
{
long n = deg(f);
if (n <= 0) return 0;
if (n == 1) return 1;
zz_pEXModulus F;
build(F, f);
zz_pEX b, r, s;
FrobeniusMap(b, F);
long all_zero = 1;
long i;
for (i = 0; i < iter; i++) {
random(r, n);
TraceMap(s, r, n, F, b);
all_zero = all_zero && IsZero(s);
if (deg(s) > 0) return 0;
}
if (!all_zero || (n & 1)) return 1;
PowerCompose(s, b, n/2, F);
return !IsX(s);
}
long zz_pEX_BlockingFactor = 10;
void RootEDF(vec_zz_pEX& factors, const zz_pEX& f, long verbose)
{
vec_zz_pE roots;
double t;
if (verbose) { cerr << "finding roots..."; t = GetTime(); }
FindRoots(roots, f);
if (verbose) { cerr << (GetTime()-t) << "\n"; }
long r = roots.length();
factors.SetLength(r);
for (long j = 0; j < r; j++) {
SetX(factors[j]);
sub(factors[j], factors[j], roots[j]);
}
}
void EDFSplit(vec_zz_pEX& v, const zz_pEX& f, const zz_pEX& b, long d)
{
zz_pEX a, g, h;
zz_pEXModulus F;
vec_zz_pE roots;
build(F, f);
long n = F.n;
long r = n/d;
random(a, n);
TraceMap(g, a, d, F, b);
MinPolyMod(h, g, F, r);
FindRoots(roots, h);
FindFactors(v, f, g, roots);
}
void RecEDF(vec_zz_pEX& factors, const zz_pEX& f, const zz_pEX& b, long d,
long verbose)
{
vec_zz_pEX v;
long i;
zz_pEX bb;
if (verbose) cerr << "+";
EDFSplit(v, f, b, d);
for (i = 0; i < v.length(); i++) {
if (deg(v[i]) == d) {
append(factors, v[i]);
}
else {
zz_pEX bb;
rem(bb, b, v[i]);
RecEDF(factors, v[i], bb, d, verbose);
}
}
}
void EDF(vec_zz_pEX& factors, const zz_pEX& ff, const zz_pEX& bb,
long d, long verbose)
{
zz_pEX f = ff;
zz_pEX b = bb;
if (!IsOne(LeadCoeff(f)))
Error("EDF: bad args");
long n = deg(f);
long r = n/d;
if (r == 0) {
factors.SetLength(0);
return;
}
if (r == 1) {
factors.SetLength(1);
factors[0] = f;
return;
}
if (d == 1) {
RootEDF(factors, f, verbose);
return;
}
double t;
if (verbose) {
cerr << "computing EDF(" << d << "," << r << ")...";
t = GetTime();
}
factors.SetLength(0);
RecEDF(factors, f, b, d, verbose);
if (verbose) cerr << (GetTime()-t) << "\n";
}
void SFCanZass(vec_zz_pEX& factors, const zz_pEX& ff, long verbose)
{
zz_pEX f = ff;
if (!IsOne(LeadCoeff(f)))
Error("SFCanZass: bad args");
if (deg(f) == 0) {
factors.SetLength(0);
return;
}
if (deg(f) == 1) {
factors.SetLength(1);
factors[0] = f;
return;
}
factors.SetLength(0);
double t;
zz_pEXModulus F;
build(F, f);
zz_pEX h;
if (verbose) { cerr << "computing X^p..."; t = GetTime(); }
FrobeniusMap(h, F);
if (verbose) { cerr << (GetTime()-t) << "\n"; }
vec_pair_zz_pEX_long u;
if (verbose) { cerr << "computing DDF..."; t = GetTime(); }
NewDDF(u, f, h, verbose);
if (verbose) {
t = GetTime()-t;
cerr << "DDF time: " << t << "\n";
}
zz_pEX hh;
vec_zz_pEX v;
long i;
for (i = 0; i < u.length(); i++) {
const zz_pEX& g = u[i].a;
long d = u[i].b;
long r = deg(g)/d;
if (r == 1) {
// g is already irreducible
append(factors, g);
}
else {
// must perform EDF
if (d == 1) {
// root finding
RootEDF(v, g, verbose);
append(factors, v);
}
else {
// general case
rem(hh, h, g);
EDF(v, g, hh, d, verbose);
append(factors, v);
}
}
}
}
void CanZass(vec_pair_zz_pEX_long& factors, const zz_pEX& f, long verbose)
{
if (!IsOne(LeadCoeff(f)))
Error("CanZass: bad args");
double t;
vec_pair_zz_pEX_long sfd;
vec_zz_pEX x;
if (verbose) { cerr << "square-free decomposition..."; t = GetTime(); }
SquareFreeDecomp(sfd, f);
if (verbose) cerr << (GetTime()-t) << "\n";
factors.SetLength(0);
long i, j;
for (i = 0; i < sfd.length(); i++) {
if (verbose) {
cerr << "factoring multiplicity " << sfd[i].b
<< ", deg = " << deg(sfd[i].a) << "\n";
}
SFCanZass(x, sfd[i].a, verbose);
for (j = 0; j < x.length(); j++)
append(factors, cons(x[j], sfd[i].b));
}
}
void mul(zz_pEX& f, const vec_pair_zz_pEX_long& v)
{
long i, j, n;
n = 0;
for (i = 0; i < v.length(); i++)
n += v[i].b*deg(v[i].a);
zz_pEX g(INIT_SIZE, n+1);
set(g);
for (i = 0; i < v.length(); i++)
for (j = 0; j < v[i].b; j++) {
mul(g, g, v[i].a);
}
f = g;
}
long BaseCase(const zz_pEX& h, long q, long a, const zz_pEXModulus& F)
{
long b, e;
zz_pEX lh(INIT_SIZE, F.n);
lh = h;
b = 1;
e = 0;
while (e < a-1 && !IsX(lh)) {
e++;
b *= q;
PowerCompose(lh, lh, q, F);
}
if (!IsX(lh)) b *= q;
return b;
}
void TandemPowerCompose(zz_pEX& y1, zz_pEX& y2, const zz_pEX& h,
long q1, long q2, const zz_pEXModulus& F)
{
zz_pEX z(INIT_SIZE, F.n);
long sw;
z = h;
SetX(y1);
SetX(y2);
while (q1 || q2) {
sw = 0;
if (q1 > 1 || q2 > 1) sw = 4;
if (q1 & 1) {
if (IsX(y1))
y1 = z;
else
sw = sw | 2;
}
if (q2 & 1) {
if (IsX(y2))
y2 = z;
else
sw = sw | 1;
}
switch (sw) {
case 0:
break;
case 1:
CompMod(y2, y2, z, F);
break;
case 2:
CompMod(y1, y1, z, F);
break;
case 3:
Comp2Mod(y1, y2, y1, y2, z, F);
break;
case 4:
CompMod(z, z, z, F);
break;
case 5:
Comp2Mod(z, y2, z, y2, z, F);
break;
case 6:
Comp2Mod(z, y1, z, y1, z, F);
break;
case 7:
Comp3Mod(z, y1, y2, z, y1, y2, z, F);
break;
}
q1 = q1 >> 1;
q2 = q2 >> 1;
}
}
long RecComputeDegree(long u, const zz_pEX& h, const zz_pEXModulus& F,
FacVec& fvec)
{
if (IsX(h)) return 1;
if (fvec[u].link == -1) return BaseCase(h, fvec[u].q, fvec[u].a, F);
zz_pEX h1, h2;
long q1, q2, r1, r2;
q1 = fvec[fvec[u].link].val;
q2 = fvec[fvec[u].link+1].val;
TandemPowerCompose(h1, h2, h, q1, q2, F);
r1 = RecComputeDegree(fvec[u].link, h2, F, fvec);
r2 = RecComputeDegree(fvec[u].link+1, h1, F, fvec);
return r1*r2;
}
long RecComputeDegree(const zz_pEX& h, const zz_pEXModulus& F)
// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
{
if (F.n == 1 || IsX(h))
return 1;
FacVec fvec;
FactorInt(fvec, F.n);
return RecComputeDegree(fvec.length()-1, h, F, fvec);
}
void FindRoot(zz_pE& root, const zz_pEX& ff)
// finds a root of ff.
// assumes that ff is monic and splits into distinct linear factors
{
zz_pEXModulus F;
zz_pEX h, h1, f;
zz_pEX r;
f = ff;
if (!IsOne(LeadCoeff(f)))
Error("FindRoot: bad args");
if (deg(f) == 0)
Error("FindRoot: bad args");
while (deg(f) > 1) {
build(F, f);
random(r, deg(F));
if (IsOdd(zz_pE::cardinality())) {
PowerMod(h, r, RightShift(zz_pE::cardinality(), 1), F);
sub(h, h, 1);
}
else {
AbsTraceMap(h, r, F);
}
GCD(h, h, f);
if (deg(h) > 0 && deg(h) < deg(f)) {
if (deg(h) > deg(f)/2)
div(f, f, h);
else
f = h;
}
}
negate(root, ConstTerm(f));
}
static
long power(long a, long e)
{
long i, res;
res = 1;
for (i = 1; i <= e; i++)
res = res * a;
return res;
}
static
long IrredBaseCase(const zz_pEX& h, long q, long a, const zz_pEXModulus& F)
{
long e;
zz_pEX X, s, d;
e = power(q, a-1);
PowerCompose(s, h, e, F);
SetX(X);
sub(s, s, X);
GCD(d, F.f, s);
return IsOne(d);
}
static
long RecIrredTest(long u, const zz_pEX& h, const zz_pEXModulus& F,
const FacVec& fvec)
{
long q1, q2;
zz_pEX h1, h2;
if (IsX(h)) return 0;
if (fvec[u].link == -1) {
return IrredBaseCase(h, fvec[u].q, fvec[u].a, F);
}
q1 = fvec[fvec[u].link].val;
q2 = fvec[fvec[u].link+1].val;
TandemPowerCompose(h1, h2, h, q1, q2, F);
return RecIrredTest(fvec[u].link, h2, F, fvec)
&& RecIrredTest(fvec[u].link+1, h1, F, fvec);
}
long DetIrredTest(const zz_pEX& f)
{
if (deg(f) <= 0) return 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -