📄 c_lip.h
字号:
/********************************************************************
Conversion
*********************************************************************/
void _ntl_zzero(_ntl_verylong *a);
/* *a = 0; space is allocated */
void _ntl_zzero1(_ntl_verylong *a);
/* *a = 0; space not necessarily allocated */
void _ntl_zone(_ntl_verylong *a);
/* *a = 1 */
void _ntl_zintoz(long d, _ntl_verylong *a);
/* *a = d; space is allocated */
void _ntl_zintoz1(long d, _ntl_verylong *a);
/* *a = d; space not necessarily allocated */
void _ntl_zuintoz(unsigned long d, _ntl_verylong *a);
/* *a = d; space is allocated */
long _ntl_ztoint(_ntl_verylong a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
unsigned long _ntl_ztouint(_ntl_verylong a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
double _ntl_zdoub(_ntl_verylong n);
/* converts a to a double; no overflow check */
long _ntl_zround_correction(_ntl_verylong a, long k, long residual);
/* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
The result is what we should add to (a >> k) to round
x = a/2^k to the nearest integer using IEEE-like rounding rules
(i.e., round to nearest, and round to even to break ties).
The result is either 0 or sign(a).
If residual is not zero, it is as if x were replaced by
x' = x + residual*2^{-(k+1)}.
This can be used to break ties when x is exactly
half way between two integers. */
double _ntl_zlog(_ntl_verylong a);
/* computes log(a), protecting against overflow */
void _ntl_zdoubtoz(double a, _ntl_verylong *x);
/* x = floor(a); */
/************************************************************************
Square roots
*************************************************************************/
long _ntl_zsqrts(long n);
/* return floor(sqrt(n)); error raised in n < 0 */
void _ntl_zsqrt(_ntl_verylong n, _ntl_verylong *r);
/* *r = floor(sqrt(n)); error raised in n < 0 */
/*********************************************************************
Exponentiation
**********************************************************************/
void _ntl_zexp(_ntl_verylong a, long e, _ntl_verylong *b);
/* *b = a^e; error raised if e < 0 */
void _ntl_zexps(long a, long e, _ntl_verylong *b);
/* *b = a^e; error raised if e < 0 */
/*********************************************************************
Modular Arithmetic
Addition, subtraction, multiplication, squaring division, inversion,
and exponentiation modulo a positive modulus n, where all operands
(except for the exponent in exponentiation) and results are in the
range [0, n-1].
ALIAS RESTRICTION: output parameters should not alias n
***********************************************************************/
void _ntl_zaddmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a + b) % n */
void _ntl_zsubmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a - b) % n */
void _ntl_zsmulmod(_ntl_verylong a, long b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a * b) % n */
void _ntl_zmulmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a * b) % n */
void _ntl_zsqmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a ^ 2) % n */
void _ntl_zinvmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
/* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */
void _ntl_zpowermod(_ntl_verylong g, _ntl_verylong e, _ntl_verylong F,
_ntl_verylong *h);
/* *b = (a ^ e) % n; */
/**************************************************************************
Euclidean Algorithms
***************************************************************************/
void _ntl_zgcd(_ntl_verylong m1, _ntl_verylong m2, _ntl_verylong *r);
/* *r = greatest common divisor of m1 and m2;
uses binary gcd algorithm */
void _ntl_zexteucl(_ntl_verylong a, _ntl_verylong *xa,
_ntl_verylong b, _ntl_verylong *xb,
_ntl_verylong *d);
/*
*d = a * *xa + b * *xb = gcd(a, b);
sets *d, *xa and *xb given a and b;
uses Lehmer`s trick
*/
long _ntl_zinv(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/*
if (a and b coprime)
{
*c = inv;
return(0);
}
else
{
*c = gcd(a, b);
return(1);
}
where inv is such that (inv * a) == 1 mod b;
error raised if b <= 1 or a < 0 or a >= b
*/
long _ntl_zxxratrecon(_ntl_verylong x, _ntl_verylong m,
_ntl_verylong a_bound, _ntl_verylong b_bound,
_ntl_verylong *a, _ntl_verylong *b);
/* rational reconstruction: see doc in ZZ.txt */
/**********************************************************************
Storage Allocation
These routines use malloc and free.
***********************************************************************/
void _ntl_zsetlength(_ntl_verylong *v, long len);
/* Allocates enough space to hold a len-digit number,
where each digit has NTL_NBITS bits.
If space must be allocated, space for one extra digit
is always allocated. */
void _ntl_zfree(_ntl_verylong *x);
/* Free's space held by x, and sets x back to 0. */
/*******************************************************************
Special routines
********************************************************************/
long _ntl_zsize(_ntl_verylong n);
long _ntl_zisone(_ntl_verylong n);
long _ntl_zdigit(_ntl_verylong a, long i);
long _ntl_zsptest(_ntl_verylong a);
long _ntl_zwsptest(_ntl_verylong a);
long _ntl_zcrtinrange(_ntl_verylong g, _ntl_verylong a);
void _ntl_zfrombytes(_ntl_verylong *x, const unsigned char *p, long n);
void _ntl_zbytesfromz(unsigned char *p, _ntl_verylong a, long nn);
long _ntl_zblock_construct_alloc(_ntl_verylong *x, long d, long n);
void _ntl_zblock_construct_set(_ntl_verylong x, _ntl_verylong *y, long i);
long _ntl_zblock_destroy(_ntl_verylong x);
long _ntl_zblock_storage(long d);
void _ntl_crt_struct_init(void **crt_struct, long n, _ntl_verylong p,
const long *primes);
void _ntl_crt_struct_insert(void *crt_struct, long i, _ntl_verylong m);
void _ntl_crt_struct_free(void *crt_struct);
void _ntl_crt_struct_eval(void *crt_struct, _ntl_verylong *t, const long *a);
long _ntl_crt_struct_special(void *crt_struct);
void _ntl_rem_struct_init(void **rem_struct, long n, _ntl_verylong p,
const long *primes);
void _ntl_rem_struct_free(void *rem_struct);
void _ntl_rem_struct_eval(void *rem_struct, long *x, _ntl_verylong a);
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif
extern int _ntl_gmp_hack;
#define NTL_crt_struct_eval _ntl_crt_struct_eval
#define NTL_crt_struct_free _ntl_crt_struct_free
#define NTL_crt_struct_init _ntl_crt_struct_init
#define NTL_crt_struct_insert _ntl_crt_struct_insert
#define NTL_crt_struct_special _ntl_crt_struct_special
#define NTL_rem_struct_eval _ntl_rem_struct_eval
#define NTL_rem_struct_free _ntl_rem_struct_free
#define NTL_rem_struct_init _ntl_rem_struct_init
#define NTL_verylong _ntl_verylong
#define NTL_z2log _ntl_z2log
#define NTL_zabs _ntl_zabs
#define NTL_zadd _ntl_zadd
#define NTL_zaddmod _ntl_zaddmod
#define NTL_zand _ntl_zand
#define NTL_zbit _ntl_zbit
#define NTL_zblock_construct_alloc _ntl_zblock_construct_alloc
#define NTL_zblock_construct_set _ntl_zblock_construct_set
#define NTL_zblock_destroy _ntl_zblock_destroy
#define NTL_zblock_storage _ntl_zblock_storage
#define NTL_zbytesfromz _ntl_zbytesfromz
#define NTL_zcompare _ntl_zcompare
#define NTL_zcopy _ntl_zcopy1
#define NTL_zcrtinrange _ntl_zcrtinrange
#define NTL_zdigit _ntl_zdigit
#define NTL_zdiv _ntl_zdiv
#define NTL_zdoub _ntl_zdoub
#define NTL_zdoubtoz _ntl_zdoubtoz
#define NTL_zexp _ntl_zexp
#define NTL_zexps _ntl_zexps
#define NTL_zexteucl _ntl_zexteucl
#define NTL_zfree _ntl_zfree
#define NTL_zfrombytes _ntl_zfrombytes
#define NTL_zgcd _ntl_zgcd
#define NTL_zintoz _ntl_zintoz1
#define NTL_zinv _ntl_zinv
#define NTL_zinvmod _ntl_zinvmod
#define NTL_zisone _ntl_zisone
#define NTL_ziszero _ntl_ziszero
#define NTL_zlog _ntl_zlog
#define NTL_zlowbits _ntl_zlowbits
#define NTL_zlshift _ntl_zlshift
#define NTL_zmakeodd _ntl_zmakeodd
#define NTL_zmod _ntl_zmod
#define NTL_zmul _ntl_zmul
#define NTL_zmulmod _ntl_zmulmod
#define NTL_znegate _ntl_znegate
#define NTL_znumtwos _ntl_znumtwos
#define NTL_zodd _ntl_zodd
#define NTL_zone _ntl_zone
#define NTL_zor _ntl_zor
#define NTL_zpowermod _ntl_zpowermod
#define NTL_zquickmod _ntl_zquickmod
#define NTL_zround_correction _ntl_zround_correction
#define NTL_zrshift _ntl_zrshift
#define NTL_zsadd _ntl_zsadd
#define NTL_zscompare _ntl_zscompare
#define NTL_zsdiv _ntl_zsdiv
#define NTL_zsetbit _ntl_zsetbit
#define NTL_zsetlength _ntl_zsetlength
#define NTL_zsign _ntl_zsign
#define NTL_zsize _ntl_zsize
#define NTL_zslowbits _ntl_zslowbits
#define NTL_zsmod _ntl_zsmod
#define NTL_zsmul _ntl_zsmul
#define NTL_zsmulmod _ntl_zsmulmod
#define NTL_zsptest _ntl_zsptest
#define NTL_zsq _ntl_zsq
#define NTL_zsqmod _ntl_zsqmod
#define NTL_zsqrt _ntl_zsqrt
#define NTL_zsqrts _ntl_zsqrts
#define NTL_zsub _ntl_zsub
#define NTL_zsubmod _ntl_zsubmod
#define NTL_zsubpos _ntl_zsubpos
#define NTL_zswap _ntl_zswap
#define NTL_zswitchbit _ntl_zswitchbit
#define NTL_ztoint _ntl_ztoint
#define NTL_ztouint _ntl_ztouint
#define NTL_zuintoz _ntl_zuintoz
#define NTL_zweight _ntl_zweight
#define NTL_zweights _ntl_zweights
#define NTL_zwsptest _ntl_zwsptest
#define NTL_zxor _ntl_zxor
#define NTL_zxxratrecon _ntl_zxxratrecon
#define NTL_zzero _ntl_zzero1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -