📄 zz_px.h
字号:
vec_ZZ_p tracevec; // mutable
// but these will remain public
ZZ_pXModulus(const ZZ_pX& ff);
const ZZ_pX& val() const { return f; }
operator const ZZ_pX& () const { return f; }
};
inline long deg(const ZZ_pXModulus& F) { return F.n; }
void build(ZZ_pXModulus& F, const ZZ_pX& f);
// deg(f) > 0.
void rem21(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXModulus& F);
// x = a % f
// deg(a) <= 2(n-1), where n = F.n = deg(f)
void rem(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXModulus& F);
// x = a % f, no restrictions on deg(a); makes repeated calls to rem21
inline ZZ_pX operator%(const ZZ_pX& a, const ZZ_pXModulus& F)
{ ZZ_pX x; rem(x, a, F); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX& operator%=(ZZ_pX& x, const ZZ_pXModulus& F)
{ rem(x, x, F); return x; }
void DivRem(ZZ_pX& q, ZZ_pX& r, const ZZ_pX& a, const ZZ_pXModulus& F);
void div(ZZ_pX& q, const ZZ_pX& a, const ZZ_pXModulus& F);
inline ZZ_pX operator/(const ZZ_pX& a, const ZZ_pXModulus& F)
{ ZZ_pX x; div(x, a, F); NTL_OPT_RETURN(ZZ_pX, x); }
inline ZZ_pX& operator/=(ZZ_pX& x, const ZZ_pXModulus& F)
{ div(x, x, F); return x; }
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pX& b, const ZZ_pXModulus& F);
// x = (a * b) % f
// deg(a), deg(b) < n
inline ZZ_pX MulMod(const ZZ_pX& a, const ZZ_pX& b, const ZZ_pXModulus& F)
{ ZZ_pX x; MulMod(x, a, b, F); NTL_OPT_RETURN(ZZ_pX, x); }
void SqrMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXModulus& F);
// x = a^2 % f
// deg(a) < n
inline ZZ_pX SqrMod(const ZZ_pX& a, const ZZ_pXModulus& F)
{ ZZ_pX x; SqrMod(x, a, F); NTL_OPT_RETURN(ZZ_pX, x); }
void PowerMod(ZZ_pX& x, const ZZ_pX& a, const ZZ& e, const ZZ_pXModulus& F);
// x = a^e % f, e >= 0
inline ZZ_pX PowerMod(const ZZ_pX& a, const ZZ& e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerMod(x, a, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
inline void PowerMod(ZZ_pX& x, const ZZ_pX& a, long e, const ZZ_pXModulus& F)
{ PowerMod(x, a, ZZ_expo(e), F); }
inline ZZ_pX PowerMod(const ZZ_pX& a, long e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerMod(x, a, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
void PowerXMod(ZZ_pX& x, const ZZ& e, const ZZ_pXModulus& F);
// x = X^e % f, e >= 0
inline ZZ_pX PowerXMod(const ZZ& e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerXMod(x, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
inline void PowerXMod(ZZ_pX& x, long e, const ZZ_pXModulus& F)
{ PowerXMod(x, ZZ_expo(e), F); }
inline ZZ_pX PowerXMod(long e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerXMod(x, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
void PowerXPlusAMod(ZZ_pX& x, const ZZ_p& a, const ZZ& e, const ZZ_pXModulus& F);
// x = (X + a)^e % f, e >= 0
inline ZZ_pX PowerXPlusAMod(const ZZ_p& a, const ZZ& e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerXPlusAMod(x, a, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
inline void PowerXPlusAMod(ZZ_pX& x, const ZZ_p& a, long e, const ZZ_pXModulus& F)
{ PowerXPlusAMod(x, a, ZZ_expo(e), F); }
inline ZZ_pX PowerXPlusAMod(const ZZ_p& a, long e, const ZZ_pXModulus& F)
{ ZZ_pX x; PowerXPlusAMod(x, a, e, F); NTL_OPT_RETURN(ZZ_pX, x); }
// If you need to compute a * b % f for a fixed b, but for many a's
// (for example, computing powers of b modulo f), it is
// much more efficient to first build a ZZ_pXMultiplier B for b,
// and then use the routine below.
class ZZ_pXMultiplier {
public:
ZZ_pXMultiplier() : UseFFT(0) { }
ZZ_pXMultiplier(const ZZ_pX& b, const ZZ_pXModulus& F);
~ZZ_pXMultiplier() { }
// the following members may become private in the future
ZZ_pX b;
long UseFFT;
FFTRep B1;
FFTRep B2;
// but this will remain public
const ZZ_pX& val() const { return b; }
};
void build(ZZ_pXMultiplier& B, const ZZ_pX& b, const ZZ_pXModulus& F);
void MulMod(ZZ_pX& x, const ZZ_pX& a, const ZZ_pXMultiplier& B,
const ZZ_pXModulus& F);
inline ZZ_pX MulMod(const ZZ_pX& a, const ZZ_pXMultiplier& B,
const ZZ_pXModulus& F)
{ ZZ_pX x; MulMod(x, a, B, F); NTL_OPT_RETURN(ZZ_pX, x); }
// x = (a * b) % f
/*******************************************************
Evaluation and related problems
********************************************************/
void BuildFromRoots(ZZ_pX& x, const vec_ZZ_p& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()
inline ZZ_pX BuildFromRoots(const vec_ZZ_p& a)
{ ZZ_pX x; BuildFromRoots(x, a); NTL_OPT_RETURN(ZZ_pX, x); }
void eval(ZZ_p& b, const ZZ_pX& f, const ZZ_p& a);
// b = f(a)
inline ZZ_p eval(const ZZ_pX& f, const ZZ_p& a)
{ ZZ_p x; eval(x, f, a); NTL_OPT_RETURN(ZZ_p, x); }
void eval(vec_ZZ_p& b, const ZZ_pX& f, const vec_ZZ_p& a);
// b[i] = f(a[i])
inline vec_ZZ_p eval(const ZZ_pX& f, const vec_ZZ_p& a)
{ vec_ZZ_p x; eval(x, f, a); NTL_OPT_RETURN(vec_ZZ_p, x); }
void interpolate(ZZ_pX& f, const vec_ZZ_p& a, const vec_ZZ_p& b);
// computes f such that f(a[i]) = b[i]
inline ZZ_pX interpolate(const vec_ZZ_p& a, const vec_ZZ_p& b)
{ ZZ_pX x; interpolate(x, a, b); NTL_OPT_RETURN(ZZ_pX, x); }
/*****************************************************************
vectors of ZZ_pX's
*****************************************************************/
NTL_vector_decl(ZZ_pX,vec_ZZ_pX)
NTL_eq_vector_decl(ZZ_pX,vec_ZZ_pX)
NTL_io_vector_decl(ZZ_pX,vec_ZZ_pX)
/**********************************************************
Modular Composition and Minimal Polynomials
***********************************************************/
// algorithms for computing g(h) mod f
void CompMod(ZZ_pX& x, const ZZ_pX& g, const ZZ_pX& h, const ZZ_pXModulus& F);
// x = g(h) mod f
inline ZZ_pX CompMod(const ZZ_pX& g, const ZZ_pX& h,
const ZZ_pXModulus& F)
{ ZZ_pX x; CompMod(x, g, h, F); NTL_OPT_RETURN(ZZ_pX, x); }
void Comp2Mod(ZZ_pX& x1, ZZ_pX& x2, const ZZ_pX& g1, const ZZ_pX& g2,
const ZZ_pX& h, const ZZ_pXModulus& F);
// xi = gi(h) mod f (i=1,2)
void Comp3Mod(ZZ_pX& x1, ZZ_pX& x2, ZZ_pX& x3,
const ZZ_pX& g1, const ZZ_pX& g2, const ZZ_pX& g3,
const ZZ_pX& h, const ZZ_pXModulus& F);
// xi = gi(h) mod f (i=1..3)
// The routine build (see below) which is implicitly called
// by the various compose and UpdateMap routines builds a table
// of polynomials.
// If ZZ_pXArgBound > 0, then the table is limited in
// size to approximamtely that many KB.
// If ZZ_pXArgBound <= 0, then it is ignored, and space is allocated
// so as to maximize speed.
// Initially, ZZ_pXArgBound = 0.
// If a single h is going to be used with many g's
// then you should build a ZZ_pXArgument for h,
// and then use the compose routine below.
// build computes and stores h, h^2, ..., h^m mod f.
// After this pre-computation, composing a polynomial of degree
// roughly n with h takes n/m multiplies mod f, plus n^2
// scalar multiplies.
// Thus, increasing m increases the space requirement and the pre-computation
// time, but reduces the composition time.
// If ZZ_pXArgBound > 0, a table of size less than m may be built.
struct ZZ_pXArgument {
vec_ZZ_pX H;
};
extern long ZZ_pXArgBound;
void build(ZZ_pXArgument& H, const ZZ_pX& h, const ZZ_pXModulus& F, long m);
// m must be > 0, otherwise an error is raised
void CompMod(ZZ_pX& x, const ZZ_pX& g, const ZZ_pXArgument& H,
const ZZ_pXModulus& F);
inline ZZ_pX
CompMod(const ZZ_pX& g, const ZZ_pXArgument& H, const ZZ_pXModulus& F)
{ ZZ_pX x; CompMod(x, g, H, F); NTL_OPT_RETURN(ZZ_pX, x); }
#ifndef NTL_TRANSITION
void UpdateMap(vec_ZZ_p& x, const vec_ZZ_p& a,
const ZZ_pXMultiplier& B, const ZZ_pXModulus& F);
inline vec_ZZ_p
UpdateMap(const vec_ZZ_p& a,
const ZZ_pXMultiplier& B, const ZZ_pXModulus& F)
{ vec_ZZ_p x; UpdateMap(x, a, B, F);
NTL_OPT_RETURN(vec_ZZ_p, x); }
#endif
/* computes (a, b), (a, (b*X)%f), ..., (a, (b*X^{n-1})%f),
where ( , ) denotes the vector inner product.
This is really a "transposed" MulMod by B.
*/
void PlainUpdateMap(vec_ZZ_p& x, const vec_ZZ_p& a,
const ZZ_pX& b, const ZZ_pX& f);
// same as above, but uses only classical arithmetic
void ProjectPowers(vec_ZZ_p& x, const vec_ZZ_p& a, long k,
const ZZ_pX& h, const ZZ_pXModulus& F);
inline vec_ZZ_p ProjectPowers(const vec_ZZ_p& a, long k,
const ZZ_pX& h, const ZZ_pXModulus& F)
{
vec_ZZ_p x;
ProjectPowers(x, a, k, h, F);
NTL_OPT_RETURN(vec_ZZ_p, x);
}
// computes (a, 1), (a, h), ..., (a, h^{k-1} % f)
// this is really a "transposed" compose.
void ProjectPowers(vec_ZZ_p& x, const vec_ZZ_p& a, long k,
const ZZ_pXArgument& H, const ZZ_pXModulus& F);
inline vec_ZZ_p ProjectPowers(const vec_ZZ_p& a, long k,
const ZZ_pXArgument& H, const ZZ_pXModulus& F)
{
vec_ZZ_p x;
ProjectPowers(x, a, k, H, F);
NTL_OPT_RETURN(vec_ZZ_p, x);
}
// same as above, but uses a pre-computed ZZ_pXArgument
inline void project(ZZ_p& x, const vec_ZZ_p& a, const ZZ_pX& b)
{ InnerProduct(x, a, b.rep); }
inline ZZ_p project(const vec_ZZ_p& a, const ZZ_pX& b)
{ ZZ_p x; project(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
void MinPolySeq(ZZ_pX& h, const vec_ZZ_p& a, long m);
// computes the minimum polynomial of a linealy generated sequence;
// m is a bound on the degree of the polynomial;
// required: a.length() >= 2*m
inline ZZ_pX MinPolySeq(const vec_ZZ_p& a, long m)
{ ZZ_pX x; MinPolySeq(x, a, m); NTL_OPT_RETURN(ZZ_pX, x); }
void ProbMinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
inline ZZ_pX ProbMinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m)
{ ZZ_pX x; ProbMinPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }
inline void ProbMinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F)
{ ProbMinPolyMod(h, g, F, F.n); }
inline ZZ_pX ProbMinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F)
{ ZZ_pX x; ProbMinPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }
// computes the monic minimal polynomial if (g mod f).
// m = a bound on the degree of the minimal polynomial.
// If this argument is not supplied, it defaults to deg(f).
// The algorithm is probabilistic, always returns a divisor of
// the minimal polynomial, and returns a proper divisor with
// probability at most m/p.
void MinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
inline ZZ_pX MinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m)
{ ZZ_pX x; MinPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }
inline void MinPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F)
{ MinPolyMod(h, g, F, F.n); }
inline ZZ_pX MinPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F)
{ ZZ_pX x; MinPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }
// same as above, but guarantees that result is correct
void IrredPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F, long m);
inline ZZ_pX IrredPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F, long m)
{ ZZ_pX x; IrredPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }
inline void IrredPolyMod(ZZ_pX& h, const ZZ_pX& g, const ZZ_pXModulus& F)
{ IrredPolyMod(h, g, F, F.n); }
inline ZZ_pX IrredPolyMod(const ZZ_pX& g, const ZZ_pXModulus& F)
{ ZZ_pX x; IrredPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }
// same as above, but assumes that f is irreducible,
// or at least that the minimal poly of g is itself irreducible.
// The algorithm is deterministic (and is always correct).
/*****************************************************************
Traces, norms, resultants
******************************************************************/
void TraceVec(vec_ZZ_p& S, const ZZ_pX& f);
inline vec_ZZ_p TraceVec(const ZZ_pX& f)
{ vec_ZZ_p x; TraceVec(x, f); NTL_OPT_RETURN(vec_ZZ_p, x); }
void FastTraceVec(vec_ZZ_p& S, const ZZ_pX& f);
void PlainTraceVec(vec_ZZ_p& S, const ZZ_pX& f);
void TraceMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pXModulus& F);
inline ZZ_p TraceMod(const ZZ_pX& a, const ZZ_pXModulus& F)
{ ZZ_p x; TraceMod(x, a, F); NTL_OPT_RETURN(ZZ_p, x); }
void TraceMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pX& f);
inline ZZ_p TraceMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_p x; TraceMod(x, a, f); NTL_OPT_RETURN(ZZ_p, x); }
void ComputeTraceVec(const ZZ_pXModulus& F);
void NormMod(ZZ_p& x, const ZZ_pX& a, const ZZ_pX& f);
inline ZZ_p NormMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_p x; NormMod(x, a, f); NTL_OPT_RETURN(ZZ_p, x); }
void resultant(ZZ_p& rres, const ZZ_pX& a, const ZZ_pX& b);
inline ZZ_p resultant(const ZZ_pX& a, const ZZ_pX& b)
{ ZZ_p x; resultant(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
void CharPolyMod(ZZ_pX& g, const ZZ_pX& a, const ZZ_pX& f);
// g = char poly of (a mod f)
inline ZZ_pX CharPolyMod(const ZZ_pX& a, const ZZ_pX& f)
{ ZZ_pX x; CharPolyMod(x, a, f); NTL_OPT_RETURN(ZZ_pX, x); }
NTL_CLOSE_NNS
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -