📄 lzz_pexfactoring.h
字号:
#ifndef NTL_zz_pEXFactoring__H
#define NTL_zz_pEXFactoring__H
#include <NTL/pair_lzz_pEX_long.h>
NTL_OPEN_NNS
void SquareFreeDecomp(vec_pair_zz_pEX_long& u, const zz_pEX& f);
inline vec_pair_zz_pEX_long SquareFreeDecomp(const zz_pEX& f)
{ vec_pair_zz_pEX_long x; SquareFreeDecomp(x, f); return x; }
// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms
// (i.e., g_i = 1) deleted.
void FindRoots(vec_zz_pE& x, const zz_pEX& f);
inline vec_zz_pE FindRoots(const zz_pEX& f)
{ vec_zz_pE x; FindRoots(x, f); return x; }
// f is monic, and has deg(f) distinct roots.
// returns the list of roots
void FindRoot(zz_pE& root, const zz_pEX& f);
inline zz_pE FindRoot(const zz_pEX& f)
{ zz_pE x; FindRoot(x, f); return x; }
// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors
extern long zz_pEX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF
extern char zz_pEX_stem[];
// Determines filename stem for external storage in NewDDF.
extern double zz_pEXFileThresh; /* 128 */
// external files are used for baby/giant steps if size
// of these tables exceeds zz_pEXFileThresh KB.
void NewDDF(vec_pair_zz_pEX_long& factors,
const zz_pEX& f, const zz_pEX& h, long verbose=0);
inline vec_pair_zz_pEX_long NewDDF(const zz_pEX& f, const zz_pEX& h,
long verbose=0)
{ vec_pair_zz_pEX_long x; NewDDF(x, f, h, verbose); return x; }
void EDF(vec_zz_pEX& factors, const zz_pEX& f, const zz_pEX& b,
long d, long verbose=0);
inline vec_zz_pEX EDF(const zz_pEX& f, const zz_pEX& b,
long d, long verbose=0)
{ vec_zz_pEX x; EDF(x, f, b, d, verbose); return x; }
// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.
void RootEDF(vec_zz_pEX& factors, const zz_pEX& f, long verbose=0);
inline vec_zz_pEX RootEDF(const zz_pEX& f, long verbose=0)
{ vec_zz_pEX x; RootEDF(x, f, verbose); return x; }
// EDF for d==1
void SFCanZass(vec_zz_pEX& factors, const zz_pEX& f, long verbose=0);
inline vec_zz_pEX SFCanZass(const zz_pEX& f, long verbose=0)
{ vec_zz_pEX x; SFCanZass(x, f, verbose); return x; }
// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.
void CanZass(vec_pair_zz_pEX_long& factors, const zz_pEX& f,
long verbose=0);
inline vec_pair_zz_pEX_long CanZass(const zz_pEX& f, long verbose=0)
{ vec_pair_zz_pEX_long x; CanZass(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.
void mul(zz_pEX& f, const vec_pair_zz_pEX_long& v);
inline zz_pEX mul(const vec_pair_zz_pEX_long& v)
{ zz_pEX x; mul(x, v); return x; }
// multiplies polynomials, with multiplicities
/*************************************************************
irreducible poly's: tests and constructions
**************************************************************/
long ProbIrredTest(const zz_pEX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.
long DetIrredTest(const zz_pEX& f);
// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).
long IterIrredTest(const zz_pEX& f);
// performs an iterative deterministic irreducibility test,
// based on DDF. Fast on average (when f has a small factor).
void BuildIrred(zz_pEX& f, long n);
inline zz_pEX BuildIrred_zz_pEX(long n)
{ zz_pEX x; BuildIrred(x, n); NTL_OPT_RETURN(zz_pEX, x); }
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(zz_pEX& f, const zz_pEX& g);
inline zz_pEX BuildRandomIrred(const zz_pEX& g)
{ zz_pEX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(zz_pEX, x); }
// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.
long RecComputeDegree(const zz_pEX& h, const zz_pEXModulus& F);
// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves
long IterComputeDegree(const zz_pEX& h, const zz_pEXModulus& F);
void TraceMap(zz_pEX& w, const zz_pEX& a, long d, const zz_pEXModulus& F,
const zz_pEX& b);
inline zz_pEX TraceMap(const zz_pEX& a, long d, const zz_pEXModulus& F,
const zz_pEX& b)
{ zz_pEX x; TraceMap(x, a, d, F, b); return x; }
// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see "zz_pEX.h")
void PowerCompose(zz_pEX& w, const zz_pEX& a, long d, const zz_pEXModulus& F);
inline zz_pEX PowerCompose(const zz_pEX& a, long d, const zz_pEXModulus& F)
{ zz_pEX x; PowerCompose(x, a, d, F); return x; }
// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see "zz_pEX.h")
NTL_CLOSE_NNS
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -