📄 lzz_pex.h
字号:
inline zz_pEX operator+(long a, const zz_pEX& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, long b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pE& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_p& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(long a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator+=(zz_pEX& x, const zz_pEX& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, const zz_pE& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, const zz_p& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, long b)
{ add(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_pEX& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_pE& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_p& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, long b)
{ sub(x, x, b); return x; }
inline zz_pEX operator-(const zz_pEX& a)
{ zz_pEX x; negate(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator++(zz_pEX& x) { add(x, x, 1); return x; }
inline void operator++(zz_pEX& x, int) { add(x, x, 1); }
inline zz_pEX& operator--(zz_pEX& x) { sub(x, x, 1); return x; }
inline void operator--(zz_pEX& x, int) { sub(x, x, 1); }
/*****************************************************************
Multiplication
******************************************************************/
void mul(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
// x = a * b
void sqr(zz_pEX& x, const zz_pEX& a);
inline zz_pEX sqr(const zz_pEX& a)
{ zz_pEX x; sqr(x, a); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^2
void mul(zz_pEX & x, const zz_pEX& a, long b);
void mul(zz_pEX & x, const zz_pEX& a, const zz_p& b);
void mul(zz_pEX & x, const zz_pEX& a, const zz_pE& b);
inline void mul(zz_pEX& x, long a, const zz_pEX& b)
{ mul(x, b, a); }
inline void mul(zz_pEX& x, const zz_p& a, const zz_pEX& b)
{ mul(x, b, a); }
inline void mul(zz_pEX& x, const zz_pE& a, const zz_pEX& b)
{ mul(x, b, a); }
void MulTrunc(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, long n);
inline zz_pEX MulTrunc(const zz_pEX& a, const zz_pEX& b, long n)
{ zz_pEX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a * b % X^n
void SqrTrunc(zz_pEX& x, const zz_pEX& a, long n);
inline zz_pEX SqrTrunc(const zz_pEX& a, long n)
{ zz_pEX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a*a % X^n
inline zz_pEX operator*(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, long b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pE& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_p& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(long a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator*=(zz_pEX& x, const zz_pEX& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, const zz_pE& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, const zz_p& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, long b)
{ mul(x, x, b); return x; }
void power(zz_pEX& x, const zz_pEX& a, long e);
inline zz_pEX power(const zz_pEX& a, long e)
{ zz_pEX x; power(x, a, e); NTL_OPT_RETURN(zz_pEX, x); }
/*************************************************************
Division
**************************************************************/
void DivRem(zz_pEX& q, zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// q = a/b, r = a%b
void div(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_pE& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_p& b);
void div(zz_pEX& q, const zz_pEX& a, long b);
// q = a/b
void rem(zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// r = a%b
long divide(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
void InvTrunc(zz_pEX& x, const zz_pEX& a, long m);
inline zz_pEX InvTrunc(const zz_pEX& a, long m)
{ zz_pEX x; InvTrunc(x, a, m); NTL_OPT_RETURN(zz_pEX, x); }
// computes x = a^{-1} % X^m
// constant term must be invertible
inline zz_pEX operator/(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, long b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator/=(zz_pEX& x, const zz_pEX& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, const zz_pE& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, const zz_p& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, long b)
{ div(x, x, b); return x; }
inline zz_pEX operator%(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; rem(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator%=(zz_pEX& x, const zz_pEX& b)
{ rem(x, x, b); return x; }
/***********************************************************
GCD's
************************************************************/
void GCD(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
inline zz_pEX GCD(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; GCD(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(zz_pEX& d, zz_pEX& s, zz_pEX& t, const zz_pEX& a, const zz_pEX& b);
// d = gcd(a,b), a s + b t = d
/*************************************************************
Modular Arithmetic without pre-conditioning
**************************************************************/
// arithmetic mod f.
// all inputs and outputs are polynomials of degree less than deg(f).
// ASSUMPTION: f is assumed monic, and deg(f) > 0.
// NOTE: if you want to do many computations with a fixed f,
// use the zz_pEXModulus data structure and associated routines below.
void MulMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, const zz_pEX& f);
inline zz_pEX MulMod(const zz_pEX& a, const zz_pEX& b, const zz_pEX& f)
{ zz_pEX x; MulMod(x, a, b, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = (a * b) % f
void SqrMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX SqrMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; SqrMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^2 % f
void MulByXMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX MulByXMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; MulByXMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = (a * X) mod f
void InvMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX InvMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; InvMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f
// otherwise, returns 1 and sets x = (a, f)
/******************************************************************
Modular Arithmetic with Pre-conditioning
*******************************************************************/
// If you need to do a lot of arithmetic modulo a fixed f,
// build zz_pEXModulus F for f. This pre-computes information about f
// that speeds up the computation a great deal.
class zz_pEXModulus {
public:
zz_pEXModulus();
~zz_pEXModulus();
zz_pEXModulus(const zz_pEX& ff);
zz_pEX f; // the modulus
operator const zz_pEX& () const { return f; }
const zz_pEX& val() const { return f; }
long n; // deg(f)
long method;
zz_pEX h0;
zz_pE hlc;
zz_pEX f0;
vec_zz_pE tracevec; // mutable
};
inline long deg(const zz_pEXModulus& F) { return F.n; }
void build(zz_pEXModulus& F, const zz_pEX& f);
void rem(zz_pEX& r, const zz_pEX& a, const zz_pEXModulus& F);
void DivRem(zz_pEX& q, zz_pEX& r, const zz_pEX& a, const zz_pEXModulus& F);
void div(zz_pEX& q, const zz_pEX& a, const zz_pEXModulus& F);
void MulMod(zz_pEX& c, const zz_pEX& a, const zz_pEX& b,
const zz_pEXModulus& F);
inline zz_pEX MulMod(const zz_pEX& a, const zz_pEX& b,
const zz_pEXModulus& F)
{ zz_pEX x; MulMod(x, a, b, F); NTL_OPT_RETURN(zz_pEX, x); }
void SqrMod(zz_pEX& c, const zz_pEX& a, const zz_pEXModulus& F);
inline zz_pEX SqrMod(const zz_pEX& a, const zz_pEXModulus& F)
{ zz_pEX x; SqrMod(x, a, F); NTL_OPT_RETURN(zz_pEX, x); }
void PowerMod(zz_pEX& h, const zz_pEX& g, const ZZ& e, const zz_pEXModulus& F);
inline void PowerMod(zz_pEX& h, const zz_pEX& g, long e,
const zz_pEXModulus& F)
{ PowerMod(h, g, ZZ_expo(e), F); }
inline zz_pEX PowerMod(const zz_pEX& g, const ZZ& e,
const zz_pEXModulus& F)
{ zz_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX PowerMod(const zz_pEX& g, long e, const zz_pEXModulus& F)
{ zz_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(zz_pEX, x); }
void PowerXMod(zz_pEX& hh, const ZZ& e, const zz_pEXModulus& F);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -