📄 gf2ex.txt
字号:
NOTE: A GF2EX may be used wherever a GF2EXModulus is required,
and a GF2EXModulus may be used wherever a GF2EX is required.
\**************************************************************************/
class GF2EXModulus {
public:
GF2EXModulus(); // initially in an unusable state
GF2EXModulus(const GF2EX& f); // initialize with f, deg(f) > 0
GF2EXModulus(const GF2EXModulus&); // copy
GF2EXModulus& operator=(const GF2EXModulus&); // assignment
~GF2EXModulus(); // destructor
operator const GF2EX& () const; // implicit read-only access to f
const GF2EX& val() const; // explicit read-only access to f
};
void build(GF2EXModulus& F, const GF2EX& f);
// pre-computes information about f and stores it in F. Must have
// deg(f) > 0. Note that the declaration GF2EXModulus F(f) is
// equivalent to GF2EXModulus F; build(F, f).
// In the following, f refers to the polynomial f supplied to the
// build routine, and n = deg(f).
long deg(const GF2EXModulus& F); // return n=deg(f)
void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);
// x = (a * b) % f; deg(a), deg(b) < n
void SqrMod(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
GF2EX SqrMod(const GF2EX& a, const GF2EXModulus& F);
// x = a^2 % f; deg(a) < n
void PowerMod(GF2EX& x, const GF2EX& a, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, const ZZ& e, const GF2EXModulus& F);
void PowerMod(GF2EX& x, const GF2EX& a, long e, const GF2EXModulus& F);
GF2EX PowerMod(const GF2EX& a, long e, const GF2EXModulus& F);
// x = a^e % f; e >= 0, deg(a) < n. Uses a sliding window algorithm.
// (e may be negative)
void PowerXMod(GF2EX& x, const ZZ& e, const GF2EXModulus& F);
GF2EX PowerXMod(const ZZ& e, const GF2EXModulus& F);
void PowerXMod(GF2EX& x, long e, const GF2EXModulus& F);
GF2EX PowerXMod(long e, const GF2EXModulus& F);
// x = X^e % f (e may be negative)
void rem(GF2EX& x, const GF2EX& a, const GF2EXModulus& F);
// x = a % f
void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EXModulus& F);
// q = a/f, r = a%f
void div(GF2EX& q, const GF2EX& a, const GF2EXModulus& F);
// q = a/f
// operator notation:
GF2EX operator/(const GF2EX& a, const GF2EXModulus& F);
GF2EX operator%(const GF2EX& a, const GF2EXModulus& F);
GF2EX& operator/=(GF2EX& x, const GF2EXModulus& F);
GF2EX& operator%=(GF2EX& x, const GF2EXModulus& F);
/**************************************************************************\
vectors of GF2EX's
\**************************************************************************/
NTL_vector_decl(GF2EX,vec_GF2EX)
// vec_GF2EX
NTL_eq_vector_decl(GF2EX,vec_GF2EX)
// == and !=
NTL_io_vector_decl(GF2EX,vec_GF2EX)
// I/O operators
/**************************************************************************\
Modular Composition
Modular composition is the problem of computing g(h) mod f for
polynomials f, g, and h.
The algorithm employed is that of Brent & Kung (Fast algorithms for
manipulating formal power series, JACM 25:581-595, 1978), which uses
O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar
operations.
\**************************************************************************/
void CompMod(GF2EX& x, const GF2EX& g, const GF2EX& h, const GF2EXModulus& F);
GF2EX CompMod(const GF2EX& g, const GF2EX& h,
const GF2EXModulus& F);
// x = g(h) mod f; deg(h) < n
void Comp2Mod(GF2EX& x1, GF2EX& x2, const GF2EX& g1, const GF2EX& g2,
const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1,2); deg(h) < n.
void Comp3Mod(GF2EX& x1, GF2EX& x2, GF2EX& x3,
const GF2EX& g1, const GF2EX& g2, const GF2EX& g3,
const GF2EX& h, const GF2EXModulus& F);
// xi = gi(h) mod f (i=1..3); deg(h) < n.
/**************************************************************************\
Composition with Pre-Conditioning
If a single h is going to be used with many g's then you should build
a GF2EXArgument for h, and then use the compose routine below. The
routine build computes and stores h, h^2, ..., h^m mod f. After this
pre-computation, composing a polynomial of degree roughly n with h
takes n/m multiplies mod f, plus n^2 scalar multiplies. Thus,
increasing m increases the space requirement and the pre-computation
time, but reduces the composition time.
\**************************************************************************/
struct GF2EXArgument {
vec_GF2EX H;
};
void build(GF2EXArgument& H, const GF2EX& h, const GF2EXModulus& F, long m);
// Pre-Computes information about h. m > 0, deg(h) < n.
void CompMod(GF2EX& x, const GF2EX& g, const GF2EXArgument& H,
const GF2EXModulus& F);
GF2EX CompMod(const GF2EX& g, const GF2EXArgument& H,
const GF2EXModulus& F);
extern long GF2EXArgBound;
// Initially 0. If this is set to a value greater than zero, then
// composition routines will allocate a table of no than about
// GF2EXArgBound KB. Setting this value affects all compose routines
// and the power projection and minimal polynomial routines below,
// and indirectly affects many routines in GF2EXFactoring.
/**************************************************************************\
power projection routines
\**************************************************************************/
void project(GF2E& x, const GF2EVector& a, const GF2EX& b);
GF2E project(const GF2EVector& a, const GF2EX& b);
// x = inner product of a with coefficient vector of b
void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
const GF2EX& h, const GF2EXModulus& F);
vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
const GF2EX& h, const GF2EXModulus& F);
// Computes the vector
// project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).
// This operation is the "transpose" of the modular composition operation.
void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k,
const GF2EXArgument& H, const GF2EXModulus& F);
vec_GF2E ProjectPowers(const vec_GF2E& a, long k,
const GF2EXArgument& H, const GF2EXModulus& F);
// same as above, but uses a pre-computed GF2EXArgument
class GF2EXTransMultiplier { /* ... */ };
void build(GF2EXTransMultiplier& B, const GF2EX& b, const GF2EXModulus& F);
void UpdateMap(vec_GF2E& x, const vec_GF2E& a,
const GF2EXMultiplier& B, const GF2EXModulus& F);
vec_GF2E UpdateMap(const vec_GF2E& a,
const GF2EXMultiplier& B, const GF2EXModulus& F);
// Computes the vector
// project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)
// Restriction: a.length() <= deg(F), deg(b) < deg(F).
// This is "transposed" MulMod by B.
// Input may have "high order" zeroes stripped.
// Output always has high order zeroes stripped.
/**************************************************************************\
Minimum Polynomials
These routines should be used only when GF2E is a field.
All of these routines implement the algorithm from [Shoup, J. Symbolic
Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,
1995], based on transposed modular composition and the
Berlekamp/Massey algorithm.
\**************************************************************************/
void MinPolySeq(GF2EX& h, const vec_GF2E& a, long m);
GF2EX MinPolySeq(const vec_GF2E& a, long m);
// computes the minimum polynomial of a linealy generated sequence; m
// is a bound on the degree of the polynomial; required: a.length() >=
// 2*m
void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);
void ProbMinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F);
// computes the monic minimal polynomial if (g mod f). m = a bound on
// the degree of the minimal polynomial; in the second version, this
// argument defaults to n. The algorithm is probabilistic, always
// returns a divisor of the minimal polynomial, and returns a proper
// divisor with probability at most m/2^{GF2E::degree()}.
void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);
void MinPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F);
// same as above, but guarantees that result is correct
void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F, long m);
void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);
GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F);
// same as above, but assumes that f is irreducible, or at least that
// the minimal poly of g is itself irreducible. The algorithm is
// deterministic (and is always correct).
/**************************************************************************\
Composition and Minimal Polynomials in towers
These are implementations of algorithms that will be described
and analyzed in a forthcoming paper.
GF2E need not be a field.
\**************************************************************************/
void CompTower(GF2EX& x, const GF2X& g, const GF2EXArgument& h,
const GF2EXModulus& F);
GF2EX CompTower(const GF2X& g, const GF2EXArgument& h,
const GF2EXModulus& F);
void CompTower(GF2EX& x, const GF2X& g, const GF2EX& h,
const GF2EXModulus& F);
GF2EX CompTower(const GF2X& g, const GF2EX& h,
const GF2EXModulus& F);
// x = g(h) mod f
void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F,
long m);
GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);
void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);
GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F);
// Uses a probabilistic algorithm to compute the minimal
// polynomial of (g mod f) over GF2.
// The parameter m is a bound on the degree of the minimal polynomial
// (default = deg(f)*GF2E::degree()).
// In general, the result will be a divisor of the true minimimal
// polynomial. For correct results, use the MinPoly routines below.
void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);
void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);
GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F);
// Same as above, but result is always correct.
void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);
GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F, long m);
void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F);
GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F);
// Same as above, but assumes the minimal polynomial is
// irreducible, and uses a slightly faster, deterministic algorithm.
/**************************************************************************\
Traces, norms, resultants
\**************************************************************************/
void TraceMod(GF2E& x, const GF2EX& a, const GF2EXModulus& F);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& F);
void TraceMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E TraceMod(const GF2EX& a, const GF2EXModulus& f);
// x = Trace(a mod f); deg(a) < deg(f)
void TraceVec(vec_GF2E& S, const GF2EX& f);
vec_GF2E TraceVec(const GF2EX& f);
// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 < deg(f)
// The above trace routines implement the asymptotically fast trace
// algorithm from [von zur Gathen and Shoup, Computational Complexity,
// 1992].
void NormMod(GF2E& x, const GF2EX& a, const GF2EX& f);
GF2E NormMod(const GF2EX& a, const GF2EX& f);
// x = Norm(a mod f); 0 < deg(f), deg(a) < deg(f)
void resultant(GF2E& x, const GF2EX& a, const GF2EX& b);
GF2E resultant(const GF2EX& a, const GF2EX& b);
// x = resultant(a, b)
// NormMod and resultant require that GF2E is a field.
/**************************************************************************\
Miscellany
A GF2EX f is represented as a vec_GF2E, which can be accessed as
f.rep. The constant term is f.rep[0] and the leading coefficient is
f.rep[f.rep.length()-1], except if f is zero, in which case
f.rep.length() == 0. Note that the leading coefficient is always
nonzero (unless f is zero). One can freely access and modify f.rep,
but one should always ensure that the leading coefficient is nonzero,
which can be done by invoking f.normalize().
\**************************************************************************/
void clear(GF2EX& x) // x = 0
void set(GF2EX& x); // x = 1
void GF2EX::normalize();
// f.normalize() strips leading zeros from f.rep.
void GF2EX::SetMaxLength(long n);
// f.SetMaxLength(n) pre-allocate spaces for n coefficients. The
// polynomial that f represents is unchanged.
void GF2EX::kill();
// f.kill() sets f to 0 and frees all memory held by f. Equivalent to
// f.rep.kill().
GF2EX::GF2EX(INIT_SIZE_TYPE, long n);
// GF2EX(INIT_SIZE, n) initializes to zero, but space is pre-allocated
// for n coefficients
static const GF2EX& zero();
// GF2EX::zero() is a read-only reference to 0
void swap(GF2EX& x, GF2EX& y);
// swap x and y (via "pointer swapping")
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -