📄 gf2ex.txt
字号:
/**************************************************************************\
MODULE: GF2EX
SUMMARY:
The class GF2EX represents polynomials over GF2E,
and so can be used, for example, for arithmentic in GF(2^n)[X].
However, except where mathematically necessary (e.g., GCD computations),
GF2E need not be a field.
\**************************************************************************/
#include <NTL/GF2E.h>
#include <NTL/vec_GF2E.h>
class GF2EX {
public:
GF2EX(); // initial value 0
GF2EX(const GF2EX& a); // copy
GF2EX& operator=(const GF2EX& a); // assignment
GF2EX& operator=(const GF2E& a);
GF2EX& operator=(GF2 a);
GF2EX& operator=(long a);
~GF2EX(); // destructor
GF2EX(long i, const GF2E& c); // initilaize to X^i*c
GF2EX(long i, GF2 c);
GF2EX(long i, long c);
};
/**************************************************************************\
Comparison
\**************************************************************************/
long operator==(const GF2EX& a, const GF2EX& b);
long operator!=(const GF2EX& a, const GF2EX& b);
long IsZero(const GF2EX& a); // test for 0
long IsOne(const GF2EX& a); // test for 1
// PROMOTIONS: ==, != promote {long,GF2,GF2E} to GF2EX on (a, b).
/**************************************************************************\
Addition
\**************************************************************************/
// operator notation:
GF2EX operator+(const GF2EX& a, const GF2EX& b);
GF2EX operator-(const GF2EX& a, const GF2EX& b);
GF2EX operator-(const GF2EX& a);
GF2EX& operator+=(GF2EX& x, const GF2EX& a);
GF2EX& operator+=(GF2EX& x, const GF2E& a);
GF2EX& operator+=(GF2EX& x, GF2 a);
GF2EX& operator+=(GF2EX& x, long a);
GF2EX& operator++(GF2EX& x); // prefix
void operator++(GF2EX& x, int); // postfix
GF2EX& operator-=(GF2EX& x, const GF2EX& a);
GF2EX& operator-=(GF2EX& x, const GF2E& a);
GF2EX& operator-=(GF2EX& x, GF2 a);
GF2EX& operator-=(GF2EX& x, long a);
GF2EX& operator--(GF2EX& x); // prefix
void operator--(GF2EX& x, int); // postfix
// procedural versions:
void add(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a + b
void sub(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a - b
void negate(GF2EX& x, const GF2EX& a); // x = - a
// PROMOTIONS: +, -, add, sub promote {long,GF2,GF2E} to GF2EX on (a, b).
/**************************************************************************\
Multiplication
\**************************************************************************/
// operator notation:
GF2EX operator*(const GF2EX& a, const GF2EX& b);
GF2EX& operator*=(GF2EX& x, const GF2EX& a);
GF2EX& operator*=(GF2EX& x, const GF2E& a);
GF2EX& operator*=(GF2EX& x, GF2 a);
GF2EX& operator*=(GF2EX& x, long a);
// procedural versions:
void mul(GF2EX& x, const GF2EX& a, const GF2EX& b); // x = a * b
void sqr(GF2EX& x, const GF2EX& a); // x = a^2
GF2EX sqr(const GF2EX& a);
// PROMOTIONS: *, mul promote {long,GF2,GF2E} to GF2EX on (a, b).
void power(GF2EX& x, const GF2EX& a, long e); // x = a^e (e >= 0)
GF2EX power(const GF2EX& a, long e);
/**************************************************************************\
Shift Operations
LeftShift by n means multiplication by X^n
RightShift by n means division by X^n
A negative shift amount reverses the direction of the shift.
\**************************************************************************/
// operator notation:
GF2EX operator<<(const GF2EX& a, long n);
GF2EX operator>>(const GF2EX& a, long n);
GF2EX& operator<<=(GF2EX& x, long n);
GF2EX& operator>>=(GF2EX& x, long n);
// procedural versions:
void LeftShift(GF2EX& x, const GF2EX& a, long n);
GF2EX LeftShift(const GF2EX& a, long n);
void RightShift(GF2EX& x, const GF2EX& a, long n);
GF2EX RightShift(const GF2EX& a, long n);
/**************************************************************************\
Division
\**************************************************************************/
// operator notation:
GF2EX operator/(const GF2EX& a, const GF2EX& b);
GF2EX operator/(const GF2EX& a, const GF2E& b);
GF2EX operator/(const GF2EX& a, GF2 b);
GF2EX operator/(const GF2EX& a, long b);
GF2EX operator%(const GF2EX& a, const GF2EX& b);
GF2EX& operator/=(GF2EX& x, const GF2EX& a);
GF2EX& operator/=(GF2EX& x, const GF2E& a);
GF2EX& operator/=(GF2EX& x, GF2 a);
GF2EX& operator/=(GF2EX& x, long a);
GF2EX& operator%=(GF2EX& x, const GF2EX& a);
// procedural versions:
void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EX& b);
// q = a/b, r = a%b
void div(GF2EX& q, const GF2EX& a, const GF2EX& b);
void div(GF2EX& q, const GF2EX& a, const GF2E& b);
void div(GF2EX& q, const GF2EX& a, GF2 b);
void div(GF2EX& q, const GF2EX& a, long b);
// q = a/b
void rem(GF2EX& r, const GF2EX& a, const GF2EX& b);
// r = a%b
long divide(GF2EX& q, const GF2EX& a, const GF2EX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const GF2EX& a, const GF2EX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
/**************************************************************************\
GCD's
These routines are intended for use when GF2E is a field.
\**************************************************************************/
void GCD(GF2EX& x, const GF2EX& a, const GF2EX& b);
GF2EX GCD(const GF2EX& a, const GF2EX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(GF2EX& d, GF2EX& s, GF2EX& t, const GF2EX& a, const GF2EX& b);
// d = gcd(a,b), a s + b t = d
/**************************************************************************\
Input/Output
I/O format:
[a_0 a_1 ... a_n],
represents the polynomial a_0 + a_1*X + ... + a_n*X^n.
On output, all coefficients will be polynomials of degree < GF2E::degree() and
a_n not zero (the zero polynomial is [ ]). On input, the coefficients
are arbitrary polynomials which are reduced modulo GF2E::modulus(), and leading
zeros stripped.
\**************************************************************************/
istream& operator>>(istream& s, GF2EX& x);
ostream& operator<<(ostream& s, const GF2EX& a);
/**************************************************************************\
Some utility routines
\**************************************************************************/
long deg(const GF2EX& a); // return deg(a); deg(0) == -1.
const GF2E& coeff(const GF2EX& a, long i);
// returns a read-only reference to the coefficient of X^i, or zero if
// i not in range
const GF2E& LeadCoeff(const GF2EX& a);
// read-only reference to leading term of a, or zero if a == 0
const GF2E& ConstTerm(const GF2EX& a);
// read-only reference to constant term of a, or zero if a == 0
void SetCoeff(GF2EX& x, long i, const GF2E& a);
void SetCoeff(GF2EX& x, long i, GF2 a);
void SetCoeff(GF2EX& x, long i, long a);
// makes coefficient of X^i equal to a; error is raised if i < 0
void SetCoeff(GF2EX& x, long i);
// makes coefficient of X^i equal to 1; error is raised if i < 0
void SetX(GF2EX& x); // x is set to the monomial X
long IsX(const GF2EX& a); // test if x = X
void diff(GF2EX& x, const GF2EX& a); // x = derivative of a
GF2EX diff(const GF2EX& a);
void MakeMonic(GF2EX& x);
// if x != 0 makes x into its monic associate; LeadCoeff(x) must be
// invertible in this case
void reverse(GF2EX& x, const GF2EX& a, long hi);
GF2EX reverse(const GF2EX& a, long hi);
void reverse(GF2EX& x, const GF2EX& a);
GF2EX reverse(const GF2EX& a);
// x = reverse of a[0]..a[hi] (hi >= -1);
// hi defaults to deg(a) in second version
void VectorCopy(vec_GF2E& x, const GF2EX& a, long n);
vec_GF2E VectorCopy(const GF2EX& a, long n);
// x = copy of coefficient vector of a of length exactly n.
// input is truncated or padded with zeroes as appropriate.
/**************************************************************************\
Random Polynomials
\**************************************************************************/
void random(GF2EX& x, long n);
GF2EX random_GF2EX(long n);
// x = random polynomial of degree < n
/**************************************************************************\
Polynomial Evaluation and related problems
\**************************************************************************/
void BuildFromRoots(GF2EX& x, const vec_GF2E& a);
GF2EX BuildFromRoots(const vec_GF2E& a);
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()
void eval(GF2E& b, const GF2EX& f, const GF2E& a);
GF2E eval(const GF2EX& f, const GF2E& a);
// b = f(a)
void eval(GF2E& b, const GF2X& f, const GF2E& a);
GF2E eval(const GF2EX& f, const GF2E& a);
// b = f(a); uses ModComp algorithm for GF2X
void eval(vec_GF2E& b, const GF2EX& f, const vec_GF2E& a);
vec_GF2E eval(const GF2EX& f, const vec_GF2E& a);
// b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()
void interpolate(GF2EX& f, const vec_GF2E& a, const vec_GF2E& b);
GF2EX interpolate(const vec_GF2E& a, const vec_GF2E& b);
// interpolates the polynomial f satisfying f(a[i]) = b[i].
/**************************************************************************\
Arithmetic mod X^n
Required: n >= 0; otherwise, an error is raised.
\**************************************************************************/
void trunc(GF2EX& x, const GF2EX& a, long n); // x = a % X^n
GF2EX trunc(const GF2EX& a, long n);
void MulTrunc(GF2EX& x, const GF2EX& a, const GF2EX& b, long n);
GF2EX MulTrunc(const GF2EX& a, const GF2EX& b, long n);
// x = a * b % X^n
void SqrTrunc(GF2EX& x, const GF2EX& a, long n);
GF2EX SqrTrunc(const GF2EX& a, long n);
// x = a^2 % X^n
void InvTrunc(GF2EX& x, const GF2EX& a, long n);
GF2EX InvTrunc(GF2EX& x, const GF2EX& a, long n);
// computes x = a^{-1} % X^m. Must have ConstTerm(a) invertible.
/**************************************************************************\
Modular Arithmetic (without pre-conditioning)
Arithmetic mod f.
All inputs and outputs are polynomials of degree less than deg(f), and
deg(f) > 0.
NOTE: if you want to do many computations with a fixed f, use the
GF2EXModulus data structure and associated routines below for better
performance.
\**************************************************************************/
void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EX& f);
GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EX& f);
// x = (a * b) % f
void SqrMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX SqrMod(const GF2EX& a, const GF2EX& f);
// x = a^2 % f
void MulByXMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX MulByXMod(const GF2EX& a, const GF2EX& f);
// x = (a * X) mod f
void InvMod(GF2EX& x, const GF2EX& a, const GF2EX& f);
GF2EX InvMod(const GF2EX& a, const GF2EX& f);
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(GF2EX& x, const GF2EX& a, const GF2EX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,
// returns 1 and sets x = (a, f)
/**************************************************************************\
Modular Arithmetic with Pre-Conditioning
If you need to do a lot of arithmetic modulo a fixed f, build
GF2EXModulus F for f. This pre-computes information about f that
speeds up subsequent computations.
As an example, the following routine the product modulo f of a vector
of polynomials.
#include <NTL/GF2EX.h>
void product(GF2EX& x, const vec_GF2EX& v, const GF2EX& f)
{
GF2EXModulus F(f);
GF2EX res;
res = 1;
long i;
for (i = 0; i < v.length(); i++)
MulMod(res, res, v[i], F);
x = res;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -