📄 inverse.cpp
字号:
/*----------------------------------------------------------------------------
_ _ _
/\ | | | (_)
/ \ _ __ __| |_ __ ___ _ __ ___ ___ __| |_ __ _
/ /\ \ | '_ \ / _` | '__/ _ \| '_ ` _ \ / _ \/ _` | |/ _` |
/ ____ \| | | | (_| | | | (_) | | | | | | __/ (_| | | (_| |
/_/ \_\_| |_|\__,_|_| \___/|_| |_| |_|\___|\__,_|_|\__,_|
The contents of this file are subject to the Andromedia Public
License Version 1.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of
the License at http://www.andromedia.com/APL/
Software distributed under the License is distributed on an
"AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
implied. See the License for the specific language governing
rights and limitations under the License.
The Original Code is Pueblo client code, released November 4, 1998.
The Initial Developer of the Original Code is Andromedia Incorporated.
Portions created by Andromedia are Copyright (C) 1998 Andromedia
Incorporated. All Rights Reserved.
Andromedia Incorporated 415.365.6700
818 Mission Street - 2nd Floor 415.365.6701 fax
San Francisco, CA 94103
Contributor(s):
--------------------------------------------------------------------------
Chaco team: Dan Greening, Glenn Crocker, Jim Doubek,
Coyote Lussier, Pritham Shetty.
Wrote and designed original codebase.
------------------------------------------------------------------------------
----------------------------------------------------------------------------*/
#if ( _MSC_VER > 900 )
#pragma warning( disable: 4237 )
#endif
#include <ChTypes.h>
#include "GxTypes.h"
#include "GxTrnsfm.h"
#include <stdio.h>
/****
*
* affine_matrix4_inverse
*
* Computes the inverse of a 3D affine matrix; i.e. a matrix with a dimen-
* sionality of 4 where the right column has the entries (0, 0, 0, 1).
*
* This procedure treats the 4 by 4 matrix as a block matrix and
* calculates the inverse of one submatrix for a significant perform-
* ance improvement over a general procedure that can invert any non-
* singular matrix:
* -- -- -- --
* | | -1 | -1 |
* | A 0 | | A 0 |
* -1 | | | |
* M = | | = | -1 |
* | C 1 | | -C A 1 |
* | | | |
* -- -- -- --
*
* where M is a 4 by 4 matrix,
* A is the 3 by 3 upper left submatrix of M,
* C is the 1 by 3 lower left submatrix of M.
*
* Input:
* in - 3D affine matrix
*
* Output:
* out - inverse of 3D affine matrix
*
* Returned value:
* TRUE if input matrix is nonsingular
* FALSE otherwise
*
***/
bool
affine_matrix4_inverse (GxTransformF_t &in, GxTransformF_t &out)
{
register double det_1;
double pos, neg, temp;
#define ACCUMULATE \
if (temp >= 0.0) \
pos += temp; \
else \
neg += temp;
//#define PRECISION_LIMIT (1.0e-15)
#define PRECISION_LIMIT (1.0e-7)
/*
* Calculate the determinant of submatrix A and determine if the
* the matrix is singular as limited by the single (or double) precision
* floating-point data representation.
*/
pos = neg = 0.0;
temp = in[0][0] * in[1][1] * in[2][2];
ACCUMULATE
temp = in[0][1] * in[1][2] * in[2][0];
ACCUMULATE
temp = in[0][2] * in[1][0] * in[2][1];
ACCUMULATE
temp = -in[0][2] * in[1][1] * in[2][0];
ACCUMULATE
temp = -in[0][1] * in[1][0] * in[2][2];
ACCUMULATE
temp = -in[0][0] * in[1][2] * in[2][1];
ACCUMULATE
det_1 = pos + neg;
/* Is the submatrix A singular? */
if ((det_1 == 0.0) || (fabs(det_1 / (pos - neg)) < PRECISION_LIMIT)) {
/* Matrix M has no inverse */
fprintf (stderr, "affine_matrix4_inverse: singular matrix\n");
return FALSE;
}
else {
/* Calculate inverse(A) = adj(A) / det(A) */
det_1 = 1.0 / det_1;
out[0][0] = ( in[1][1] * in[2][2] -
in[1][2] * in[2][1] )
* det_1;
out[1][0] = - ( in[1][0] * in[2][2] -
in[1][2] * in[2][0] )
* det_1;
out[2][0] = ( in[1][0] * in[2][1] -
in[1][1] * in[2][0] )
* det_1;
out[0][1] = - ( in[0][1] * in[2][2] -
in[0][2] * in[2][1] )
* det_1;
out[1][1] = ( in[0][0] * in[2][2] -
in[0][2] * in[2][0] )
* det_1;
out[2][1] = - ( in[0][0] * in[2][1] -
in[0][1] * in[2][0] )
* det_1;
out[0][2] = ( in[0][1] * in[1][2] -
in[0][2] * in[1][1] )
* det_1;
out[1][2] = - ( in[0][0] * in[1][2] -
in[0][2] * in[1][0] )
* det_1;
out[2][2] = ( in[0][0] * in[1][1] -
in[0][1] * in[1][0] )
* det_1;
/* Calculate -C * inverse(A) */
out[3][0] = - ( in[3][0] * out[0][0] +
in[3][1] * out[1][0] +
in[3][2] * out[2][0] );
out[3][1] = - ( in[3][0] * out[0][1] +
in[3][1] * out[1][1] +
in[3][2] * out[2][1] );
out[3][2] = - ( in[3][0] * out[0][2] +
in[3][1] * out[1][2] +
in[3][2] * out[2][2] );
/* Fill in last column */
out[0][3] = out[1][3] = out[2][3] = 0.0;
out[3][3] = 1.0;
return TRUE;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -