📄 chtriangle.cpp
字号:
/*----------------------------------------------------------------------------
_ _ _
/\ | | | (_)
/ \ _ __ __| |_ __ ___ _ __ ___ ___ __| |_ __ _
/ /\ \ | '_ \ / _` | '__/ _ \| '_ ` _ \ / _ \/ _` | |/ _` |
/ ____ \| | | | (_| | | | (_) | | | | | | __/ (_| | | (_| |
/_/ \_\_| |_|\__,_|_| \___/|_| |_| |_|\___|\__,_|_|\__,_|
The contents of this file are subject to the Andromedia Public
License Version 1.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of
the License at http://www.andromedia.com/APL/
Software distributed under the License is distributed on an
"AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
implied. See the License for the specific language governing
rights and limitations under the License.
The Original Code is Pueblo client code, released November 4, 1998.
The Initial Developer of the Original Code is Andromedia Incorporated.
Portions created by Andromedia are Copyright (C) 1998 Andromedia
Incorporated. All Rights Reserved.
Andromedia Incorporated 415.365.6700
818 Mission Street - 2nd Floor 415.365.6701 fax
San Francisco, CA 94103
Contributor(s):
--------------------------------------------------------------------------
Chaco team: Dan Greening, Glenn Crocker, Jim Doubek,
Coyote Lussier, Pritham Shetty.
Wrote and designed original codebase.
------------------------------------------------------------------------------
Triangulator for Chaco VRML - based on Graphics Gems V.
----------------------------------------------------------------------------*/
#include <ChTriangle.h>
// #include "ChTriangle.h"
ChExTriangulation CH_EX_TRIANGULATION = { 666 };
ChTriangulator::ChTriangulator() :
m_count(0),
qs(0),
tr(0),
seg(0),
mchain(0),
vert(0),
mon(0),
visited(0),
permute(0),
m_triangles(0)
{
};
ChTriangulator::~ChTriangulator()
{
kill();
};
bool ChTriangulator::Attach(long *coordIndex, GxVec3f *points, int count)
{
#define TRI_EXCEPTIONS 1
#define TRI_EXCEPTIONS_ALL 1
#if defined(TRI_EXCEPTIONS)
try
#endif
{
kill();
init(count);
project(coordIndex, points, m_count);
ZapCollinears();
if(IsSelfIntersecting())
{
return false;
}
triangulate();
}
#if defined(TRI_EXCEPTIONS)
catch(ChExTriangulation)
{
#if 1
TRACE("Bad polygon for triangulation:\n");
for(int i = 0; i< count; i++)
{
char buf[200];
int j = coordIndex[i];
sprintf(buf, "points[%d] = (%.3g, %.3g, %.3g )\n", j, double(points[j].x()), double(points[j].y()), double(points[j].z()));
TRACE(buf);
}
#endif
return false;
}
#if defined(TRI_EXCEPTIONS_ALL)
catch(...)
{
#if 1
TRACE("Bad polygon for triangulation:\n");
for(int i = 0; i< count; i++)
{
char buf[200];
int j = coordIndex[i];
sprintf(buf, "points[%d] = (%.3g, %.3g, %.3g )\n", j, double(points[j].x()), double(points[j].y()), double(points[j].z()));
TRACE(buf);
}
#endif
return false;
}
#endif
#endif
return true;
};
int ChTriangulator::init(int count)
{
m_count = count;
// Dynamically allocate
m_segSize = count + 2; // ????
m_qSize = 8 * m_segSize;
m_trSize = 4 * m_segSize;
m_trSize *= 5; // ff TODO - figure out better number
m_qSize *= 5; // ff
qs = new node_t[m_qSize]; //[QSIZE]; /* Query structure */
tr = new trap_t[m_trSize]; //[TRSIZE]; /* Trapezoid structure */
seg = new segment_t[m_segSize]; //[SEGSIZE]; /* Segment table */
mchain = new monchain_t[m_trSize]; //[TRSIZE];
vert = new vertexchain_t[m_segSize]; //[SEGSIZE]; /* chain init. information. */
mon = new int[m_segSize]; //[SEGSIZE]; /* contains position of any vertex in */
visited = new int[m_trSize]; //[TRSIZE];
permute = new int[m_segSize]; //[SEGSIZE];
m_triangles = new triangle_it[m_segSize]; //[200][3];
// Zap what needs zapping
memset((void *)seg, 0, (m_segSize) * sizeof(*seg));
return 0;
};
int ChTriangulator::triangulate()
{
int nmonopoly;
global.nseg = m_count;
generate_random_ordering(m_count);
construct_trapezoids(m_count, seg);
nmonopoly = monotonate_trapezoids(m_count);
triangulate_monotone_polygons(nmonopoly, m_triangles);
return 0;
};
void ChTriangulator::kill()
{
// delete what we dynamically allocated
delete [] qs;
delete [] tr;
delete [] seg;
delete [] mchain;
delete [] vert;
delete [] mon;
delete [] visited;
delete [] permute;
delete [] m_triangles;
};
int ChTriangulator::project(long *coordIndex, GxVec3f *points, int count)
{
int i; // TODO handle duplicate points
// Compute the face normal
GxVec3f normal(0,0,0);
for ( i = 0; i < count; i++ )
{
normal += points[coordIndex[i]].cross( points[coordIndex[(i+1) % count]] ) ;
}
normal.normalize() ;
// Find maximal projection of normal on basis vector
// and use other two dimensions
int ix, iy;
GxVec3f normalSave(normal);
m_boolReflected = false;
normal.set(fabs(normal.x()), fabs(normal.y()), fabs(normal.z()));
float mx = max(max(normal.x(), normal.y()), normal.z());
if(normal.x() >= mx)
{
ix = 1;
iy = 2;
if(normalSave.x() < 0.) m_boolReflected = true;
}
else if(normal.y() >= mx)
{
ix = 0;
iy = 2;
if(normalSave.y() < 0.) m_boolReflected = true;
}
else
{
ix = 0;
iy = 1;
if(normalSave.z() < 0.) m_boolReflected = true;
}
#if 1
GxVec3f *p = new GxVec3f[count];
for ( i = 0; i < count; i++ )
{
p[i].x() = points[coordIndex[i]][ix];
p[i].y() = points[coordIndex[i]][iy];
p[i].z() = 0;
}
normal.set(0,0,0);
for ( i = 0; i < count; i++ )
{
normal += p[i].cross( p[(i+1) % count] ) ;
}
delete [] p;
m_boolReflected = normal.z() < 0.0;
#endif
const float eps = 1.e-4;
// Project away
// Note that seg and the returned triangle indices are one-based.
//
// If this is CW, we reflect to force CCW; this is cheaper/easier
// than reversing order
//
// We also bump any values which are dupes, to prevent errors
// in the convexifier.
for (i = 1; i <= count; i++) {
seg[i].is_inserted = FALSE;
seg[i].v0.x = points[coordIndex[i-1]][ix];
seg[i].v0.y = points[coordIndex[i-1]][iy];
if(m_boolReflected) seg[i].v0.x = -seg[i].v0.x; // negate to reflect
if (i == 1) {
// fill in v1
seg[count].v1.x = seg[i].v0.x;
seg[count].v1.y = seg[i].v0.y;
} else {
// perturb dupes
if(seg[i].v0.x == seg[i-1].v0.x && seg[i].v0.y == seg[i-1].v0.y)
{
seg[i].v0.x *= (1+eps);
}
// fill in v1
seg[i - 1].v1.x = seg[i].v0.x;
seg[i - 1].v1.y = seg[i].v0.y;
}
}
// perturb final dupes
if(seg[1].v0.x == seg[count].v0.x && seg[1].v0.y == seg[count].v0.y)
{
seg[1].v0.x *= (1+eps);
seg[count].v1.x = seg[1].v0.x;
}
return 0;
}
bool ChTriangulator::IsSelfIntersecting()
{
int i, j;
float x, y;
bool boolHit = false;
for (i = 1; i < m_count - 1; i++)
{
for (j = i+2; j <= m_count; j++)
{
if(j != m_count || i != 1)
{
boolHit = lines_intersect( seg[i].v0.x, seg[i].v0.y, /* First line segment */
seg[i].v1.x, seg[i].v1.y,
seg[j].v0.x, seg[j].v0.y, /* Second line segment */
seg[j].v1.x, seg[j].v1.y,
x,
y );
if(boolHit)
{
return true;
}
}
}
}
return false;
}
#define COLLINEAR_EPS (1.e-3)
bool ChTriangulator::ZapCollinears()
{
#if 0
int i, j;
bool boolHit = false;
for (i = 1; i <= m_count; i++)
{
j = i + 1;
if(j > m_count) j = 1;
float delta = (seg[j].v1.x - seg[j].v0.x) * (seg[i].v1.y - seg[i].v0.y);
delta -= (seg[i].v1.x - seg[i].v0.x) * (seg[j].v1.y - seg[j].v0.y);
if(fabs(delta) < COLLINEAR_EPS)
{
seg[i].v1.x += COLLINEAR_EPS * (seg[i].v1.y - seg[i].v0.y);
seg[j].v0.x = seg[i].v1.x;
seg[i].v1.y += COLLINEAR_EPS * (seg[i].v1.x - seg[i].v0.x);
seg[j].v0.y = seg[i].v1.y;
}
}
#endif
return true;
}
int ChTriangulator::GetCount()
{
return m_count ? m_count - 2 : 0;
};
bool ChTriangulator::GetTriangle(int triIndex, int *vertIndex)
{
ASSERT(triIndex < GetCount() && triIndex >= 0);
if(0 && m_boolReflected) // ???? why did i do this??
{
vertIndex[0] = m_triangles[triIndex][0] - 1;
vertIndex[1] = m_triangles[triIndex][2] - 1;
vertIndex[2] = m_triangles[triIndex][1] - 1;
}
else
{
vertIndex[0] = m_triangles[triIndex][0] - 1;
vertIndex[1] = m_triangles[triIndex][1] - 1;
vertIndex[2] = m_triangles[triIndex][2] - 1;
}
return true;
};
bool ChTriangulator::Iterate()
{
int iv[3];
for(int j=0; j<m_count-2; j++)
{
GetTriangle(j, iv); // not optimal, but I need to handle
// order flipping for reflected
if(!DoTriangle(j, iv)) return false;
}
return true;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -